Comptes Rendus
Numerical Analysis
A reduced basis method applied to the Restricted Hartree–Fock equations
Comptes Rendus. Mathématique, Volume 346 (2008) no. 3-4, pp. 243-248.

In this Note, we describe a reduced basis approximation method for the computation of some electronic structure in quantum chemistry, based on the Restricted Hartree–Fock equations. Numerical results are presented to show that this approach allows for reducing the complexity and potentially the computational costs.

Dans cette Note, nous décrivons une méthode d'approximation par bases réduites pour les calculs de structures électroniques en chimie quantique basées sur le modèle Restricted Hartree–Fock. Nous présentons des résultats numériques montrant que la méthode permet des réductions de complexité et potentiellement de coûts de calculs.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2007.11.015
Yvon Maday 1, 2; Ulrich Razafison 1

1 UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France
2 Division of Applied Mathematics, Brown University 182 George Street, Providence, RI 02912, USA
@article{CRMATH_2008__346_3-4_243_0,
     author = {Yvon Maday and Ulrich Razafison},
     title = {A reduced basis method applied to the {Restricted} {Hartree{\textendash}Fock} equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {243--248},
     publisher = {Elsevier},
     volume = {346},
     number = {3-4},
     year = {2008},
     doi = {10.1016/j.crma.2007.11.015},
     language = {en},
}
TY  - JOUR
AU  - Yvon Maday
AU  - Ulrich Razafison
TI  - A reduced basis method applied to the Restricted Hartree–Fock equations
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 243
EP  - 248
VL  - 346
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crma.2007.11.015
LA  - en
ID  - CRMATH_2008__346_3-4_243_0
ER  - 
%0 Journal Article
%A Yvon Maday
%A Ulrich Razafison
%T A reduced basis method applied to the Restricted Hartree–Fock equations
%J Comptes Rendus. Mathématique
%D 2008
%P 243-248
%V 346
%N 3-4
%I Elsevier
%R 10.1016/j.crma.2007.11.015
%G en
%F CRMATH_2008__346_3-4_243_0
Yvon Maday; Ulrich Razafison. A reduced basis method applied to the Restricted Hartree–Fock equations. Comptes Rendus. Mathématique, Volume 346 (2008) no. 3-4, pp. 243-248. doi : 10.1016/j.crma.2007.11.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.11.015/

[1] M. Barrault, Développement de méthodes rapides pour le calcul de structures électroniques, Ph.D. Thesis, Ecole Nationale des Ponts et Chaussées, 2005

[2] M. Barrault; Y. Maday; N.C. Nguyen; A.T. Patera An “empirical interpolation” method: Application to efficient reduced-basis discretization of partial differential equations, C. R. Acad. Sci. Paris, Ser. I, Volume 339 (2004), pp. 667-672

[3] E. Cancès; C. Le Bris; Y. Maday; G. Turinici Towards reduced basis approaches in ab initio electronic structure computations, J. Sci. Comput., Volume 17 (2002) no. 1–4, pp. 461-469

[4] E. Cancès; M. Defranceschi; W. Kutzelnigg; C. Le Bris; Y. Maday Computational quantum chemistry: a primer (Ph. Ciarlet; C. Le Bris, eds.), Handbook of Numerical Analysis. Volume X: Special Volume: Computational Chemistry, North-Holland, 2003

[5] E. Cancès; C. Le Bris; Y. Maday; N.C. Nguyen; A.T. Patera; G.S.H. Pau Feasibility and competitiveness of a reduced-basis approach for rapid electronic structure calculations in quantum chemistry, High-dimensional Partial Differential Equations in Science and Engineering, CRM Proceedings Series, vol. 41, American Mathematical Society, 2007, pp. 15-47

[6] L. Machiels; Y. Maday; I.B. Oliviera; A.T. Patera; D.V. Rovas Outputs bounds for the reduced-basis approximations of symmetric positive definite eigenvalue problems, C. R. Acad. Sci. Paris, Ser. I., Volume 331 (2000) no. 2, pp. 153-158

[7] A.T. Patera, G. Rozza, Reduced basis approximation and a posteriori error estimation for parametrized partial differential equations, http://augustine.mit.edu/methodology/methodology_book.htm

[8] G.S.H. Pau, Reduced-basis method for quantum models of periodic solids, Ph.D. Thesis, Massachusetts Institute of Technology, 2007

[9] A. Pinkus n-Widths in Approximation Theory, Springer-Verlag, 1985

[10] C. Prud'homme; D. Rovas; K. Veroy; Y. Maday; A.T. Patera; G. Turinici Reliable real-time solution of parametrized partial differential equations: Reduced basis output bound methods, J. Fluids Engrg., Volume 124 (2002) no. 1, pp. 70-80

[11] E.M. Rønquist; A.E. Løvgren; Y. Maday A reduced basis element method for the steady Stokes problem, M2AN Math. Model. Numer. Anal., Volume 40 (2006) no. 3, p. 529-552.h

[12] K. Veroy; A.T. Patera Certified real-time solution of the parametrized steady incompressible Navier–Stokes equations: rigourous reduced basis a posteriori error-bounds, Internat. J. Numer. Methods Fluids, Volume 47 (2005) no. 8–9, pp. 773-788

Cited by Sources:

Comments - Policy


Articles of potential interest

An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations

Maxime Barrault; Yvon Maday; Ngoc Cuong Nguyen; ...

C. R. Math (2004)


Global a priori convergence theory for reduced-basis approximations of single-parameter symmetric coercive elliptic partial differential equations

Yvon Maday; Anthony T. Patera; G. Turinici

C. R. Math (2002)


Reduced-basis approximation of the viscous Burgers equation: rigorous a posteriori error bounds

Karen Veroy; Christophe Prud'homme; Anthony T. Patera

C. R. Math (2003)