Comptes Rendus
Article de recherche - Analyse numérique, Équations aux dérivées partielles
Multiplicative reduced bases for hyperelasticity
[Bases réduites multiplicatives en hyperélasticité]
Comptes Rendus. Mathématique, Volume 362 (2024), pp. 593-605.

Cet article introduit un principe de bases réduites multiplicatives en hyperélasticité s’appuyant sur le développement de Baker–Campbell–Hausdorff. Nous montrons que cette construction produit des interpolations identiques pour les gradients de déformation, et les mesures de déformation surfaciques et volumiques en grandes déformations. Cette méthode est établie dans un cadre variationel consistant et nous montrons une borne supérieure pour l’erreur en norme de l’énergie. Numériquement, l’approche se distingue par une décroissance efficace de la n-épaisseur de Kolmogorov, particulièrement en présence de grandes rotations pour des comportements incompressibles.

The present paper introduces multiplicative reduced bases for hyperelasticity relying on a truncated version of the Baker–Campbell–Hausdorff’s expansion. We show such a construction is equally interpolatory (in a multiplicative way) for the fields of deformation gradients, surfacic and volumetric deformation measures involved in large deformation mechanics. The method is naturally derived from a fully consistent variational setting and we establish an upper bound of the error in the energy norm. From a computational standpoint, the approach achieves efficient Kolmogorov n-width decay when very large rotations and incompressibility are involved.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.584

Patrice Hauret 1, 2

1 SiMatLab, Campus Universitaire des Cézeaux, 24 Avenue Blaise Pascal, TSA 60026 / CS 60026, 63178 Aubière Cedex, France
2 Centre de Technologies Michelin, Place des Carmes, 63000 Clermont-Ferrand, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G6_593_0,
     author = {Patrice Hauret},
     title = {Multiplicative reduced bases for hyperelasticity},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {593--605},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     year = {2024},
     doi = {10.5802/crmath.584},
     language = {en},
}
TY  - JOUR
AU  - Patrice Hauret
TI  - Multiplicative reduced bases for hyperelasticity
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 593
EP  - 605
VL  - 362
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.584
LA  - en
ID  - CRMATH_2024__362_G6_593_0
ER  - 
%0 Journal Article
%A Patrice Hauret
%T Multiplicative reduced bases for hyperelasticity
%J Comptes Rendus. Mathématique
%D 2024
%P 593-605
%V 362
%I Académie des sciences, Paris
%R 10.5802/crmath.584
%G en
%F CRMATH_2024__362_G6_593_0
Patrice Hauret. Multiplicative reduced bases for hyperelasticity. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 593-605. doi : 10.5802/crmath.584. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.584/

[1] Ivo Babuška The finite-element method with Lagrangian multipliers, Numer. Math., Volume 20 (1973), pp. 179-192 | DOI | Zbl

[2] Henry F. Baker Alternants and continuous groups, Proc. Lond. Math. Soc., Volume 3 (1905), pp. 24-47 | DOI | Zbl

[3] John M. Ball Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal., Volume 63 (1977), pp. 337-403 | DOI | Zbl

[4] Peter Binev; Albert Cohen; Wolfgang Dahmen; Ronald DeVore; Guergana Petrova; Przemyslaw Wojtaszczyk Convergence Rates for Greedy Algorithms in Reduced Basis Methods, SIAM J. Math. Anal., Volume 43 (2011) no. 3, pp. 1457-1472 | DOI | Zbl

[5] Amina Benaceur Réduction de modèles en thermo-mécanique, Ph. D. Thesis, Paris Est University (2018)

[6] Andrea Bonfiglioli; Roberta Fulci Topics in Noncommutative Algebra, Lecture Notes in Mathematics, 2034, Springer, 2012 | DOI

[7] Sébastien Boyaval; Claude Le Bris; Tony Lelièvre; Yvon Maday; Ngoc Cuong Nguyen; Anthony T. Patera Reduced Basis Techniques for Stochastic Problems, Arch. Comput. Methods Eng., Volume 17 (2010) no. 4, pp. 435-454 | DOI

[8] Maxime Barrault; Yvon Maday; Ngoc Cuong Nguyen; Anthony T. Patera An “empirical interpolation” method: application to efficient reduced-basis discretization of partial differential equations, C. R. Math. Acad. Sci. Paris, Volume 339 (2004) no. 9, pp. 667-672 | DOI | Numdam | Zbl

[9] Annalisa Buffa; Yvon Maday; Anthony T. Patera; Christophe Prud’homme; Gabriel Turinici A priori convergence of the Greedy algorithm for the parametrized reduced basis method, ESAIM, Math. Model. Numer. Anal., Volume 46 (2012) no. 3, pp. 595-603 | DOI | Numdam | Zbl

[10] Franco Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, RAIRO, Anal. Numér., Série Rouge, Volume 8 (1974), pp. 129-151 | Numdam | Zbl

[11] John E. Campbell On a law of combination of operators, Proc. Lond. Math. Soc., Volume 29 (1898), pp. 14-32 | Zbl

[12] Albert Cohen; Wolfgang Dahmen; Ronald DeVore; J. Nichols Reduced Basis Greedy Selection Using Random Training Sets, ESAIM, Math. Model. Numer. Anal., Volume 54 (2020) no. 5, pp. 1509-1524 | DOI | Zbl

[13] P-G. Ciarlet Mathematical Elasticity, North-Holland, 1988

[14] Separated representations and PGD-based model reduction (Francisco Chinesta; Pierre Ladeveze, eds.), CISM Courses and Lectures, 554, Springer, 2014 | DOI

[15] Eric Cancès; Claude LeBris; Yvon Maday; Gabriel Turinici Towards Reduced Basis Approaches in ab initio Electronic Structure Computations, J. Sci. Comput., Volume 17 (2002) no. 1-4, pp. 461-469 | DOI | Zbl

[16] Mathieu Couplet Modelisation POD-Galerkine reduite pour le controle des ecoulements instationnaires, Ph. D. Thesis, Universite Paris-Nord (2005)

[17] Evgeniĭ B. Dynkin Calculation of the coefficients in the Campbell–Hausdorff formula, Dokl. Akad. Nauk SSSR, Volume 57 (1947), pp. 323-326 (in Russian) | Zbl

[18] Jules Fauque Modèle d’ordre réduit en mécanique du contact. Application à la simulation du comportement des combustibles nucléaires, Ph. D. Thesis, MINES ParisTech (2018)

[19] Karl Goldberg The formal power series for loge x e y , Duke Math. J., Volume 1 (1956), pp. 13-21 | Zbl

[20] Felix Hausdorff Die symbolische Exponentialformel in der Gruppentheorie, Leipz. Ber., Volume 58 (1906), pp. 19-48 | Zbl

[21] Ernst Hairer; Christian Lubich; Gerhard Wanner Geometric Numerical Integration. Structure-preserving algorithms for ordinary differential equations, Springer Series in Computational Mathematics, 31, Springer, 2002

[22] Jan Hesthaven; Cecillia Pagliantini Structure-Preserving Reduced Basis Methods for Hamiltonian Systems with a Nonlinear Poisson Structure (2018)

[23] Olga A. Ladyzhenskaya The mathematical theory of viscous incompressible flows, Gordon and Breach, 1969

[24] Patrick Le Tallec Numerical Analysis of Viscoelastic problems, Masson; Springer, 1990

[25] Patrick Le Tallec Numerical methods for nonlinear three-dimensional elasticity, Handbook of Numerical Analysis, 3, North-Holland, 1994, pp. 465-622

[26] Yvon Maday Reduced basis method for the rapid and reliable solution of partial differential equations, Proceedings of the International Congress of Mathematicians. Vol. I, European Mathematical Society (2006), pp. 1255-1270 | Zbl

[27] Luc Machiels; Yvon Maday; Ivan B. Oliveira; Anthony T. Patera; Dimitrios Rovas Output bounds for reduced-basis approximations of symmetric positive definite eigenvalue problems, C. R. Math. Acad. Sci. Paris, Volume 331 (2000) no. 2, pp. 153-158 | DOI | Zbl

[28] Yvon Maday; Ngoc Cuong Nguyen; Anthony T. Patera; S. H. Pau A general multipurpose interpolation procedure: The magic points, Commun. Pure Appl. Anal., Volume 8 (2009) no. 1, pp. 383-404 | DOI | Zbl

[29] Yvon Maday; Anthony T. Patera; Gabriel Turinici Global a priori convergence theory for reduced-basis approximation of single-parameter symmetric coercive elliptic partial differential equations, C. R. Math. Acad. Sci. Paris, Volume 335 (2002) no. 3, pp. 289-294 | DOI

[30] Morris Newman; Wasin So; Robert C. Thompson Convergence domains for the Campbell–Baker–Hausdorff formula, Linear Multilinear Algebra, Volume 24 (1989) no. 4, pp. 301-310 | DOI | Zbl

[31] George Shu Pau Reduced basis method for quantum models of crystalline solids, Ph. D. Thesis, M.I.T. (2007)

[32] Christophe Prud’homme; Dimitrios Rovas; Karen Veroy; Yvon Maday; Anthony T. Patera; Gabriel Turinici Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound methods, J. Fluids Eng., Volume 124 (2002) no. 1, pp. 70-80 | DOI

[33] Sébastien Riffaud; Michel Bergmann; Charbel Farhat; Sebastian Grimberg; Angelo Iollo The DGDD Method for Reduced-Order Modeling of Conservation Laws, J. Comput. Phys., Volume 437 (2021), 110336, 19 pages | Zbl

[34] Juan-Carlos. Simo; Michael Ortiz A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations, Comput. Methods Appl. Mech. Eng., Volume 49 (1985) no. 2, pp. 221-245 | DOI | Zbl

[35] Clifford Truesdell; Walter Noll The non-linear field theories of mechanics, Springer, 2004 | DOI

[36] Veeravalli S. Varadarajan Lie Groups, Lie Algebra and their representations, Prentice-Hall, 1974

[37] Karen Veroy; Dimitrios Rovas; Anthony T. Patera A Posteriori error estimation for reduced-basis approximation of parametrized elliptic coercive partial differential equations: “Convex inverse” bound conditioners, ESAIM, Control Optim. Calc. Var., Volume 8 (2002), pp. 1007-1028 (Special Volume: A tribute to J.-L. Lions) | DOI | Numdam | Zbl

Cité par Sources :

Commentaires - Politique