We establish an approximation result to the solution of a semi linear stochastic partial differential equation with a Neumann boundary condition. Our approach is based on the theory of backward doubly stochastic differential equations.
Nous établissons un résultat d'approximation pour les équations aux dérivées partielles stochastiques nonlinéaires avec conditions de Neumann. Pour ce faire, nous utilisons la théorie des équations différentielles doublement stochastiques rétrogrades.
Accepted:
Published online:
Naoual Mrhardy 1
@article{CRMATH_2008__346_1-2_79_0, author = {Naoual Mrhardy}, title = {An approximation result for nonlinear {SPDEs} with {Neumann} boundary conditions}, journal = {Comptes Rendus. Math\'ematique}, pages = {79--82}, publisher = {Elsevier}, volume = {346}, number = {1-2}, year = {2008}, doi = {10.1016/j.crma.2007.11.025}, language = {en}, }
Naoual Mrhardy. An approximation result for nonlinear SPDEs with Neumann boundary conditions. Comptes Rendus. Mathématique, Volume 346 (2008) no. 1-2, pp. 79-82. doi : 10.1016/j.crma.2007.11.025. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.11.025/
[1] An approximation result for nonlinear Neumann boundary value problem via BSDEs, Stochastic Process. Appl., Volume 114 (2004), pp. 331-350
[2] Generalized Backward doubly stochastic differential equations and SPDEs with nonlinear Neumann boundary conditions, Bernoulli, Volume 13 (2007) no. 2, pp. 423-446
[3] Stochastic viscosity solutions for nonlinear stochastic PDEs (Part I), Stochastic Process. Appl., Volume 93 (2001), pp. 181-204
[4] Stochastic differential equations with reflecting boundary conditions, Comm. Pure Appl. Math., Volume XXXVII (1984), pp. 511-537
[5] Stochastic variational inequality for reflected diffusion, Indiana Univ. Math. J., Volume 32 (1983) no. 5
[6] Backward doubly stochastic differential equations and systems of quasilinear SPDEs, Probab. Theory Related Fields, Volume 98 (1994), pp. 209-227
Cited by Sources:
Comments - Policy