We are interested in the approximate controllability property for a linear stochastic differential equation. For deterministic control necessary and sufficient criterion exists and is called Kalman condition. In the stochastic framework criteria are already known either when the control fully acts on the noise coefficient or when there is no control acting on the noise. We propose a generalization of Kalman condition for the general case.
On s'intéresse à la propriété de contrôlabilité approchée pour une équation différentielle stochastique linéaire. Pour le contrôle déterministe, il existe une condition nécessaire et suffisante appelée condition de Kalman. Pour le cas stochastique, des critères sont connus soit dans le cas où le contrôle agit pleinement sur le bruit, soit dans le cas où il n'y a aucun contrôle sur le bruit. Nous proposons une généralisation de la condition de Kalman pour le cas général.
Accepted:
Published online:
Dan Goreac 1
@article{CRMATH_2008__346_3-4_183_0, author = {Dan Goreac}, title = {A {Kalman-type} condition for stochastic approximate controllability}, journal = {Comptes Rendus. Math\'ematique}, pages = {183--188}, publisher = {Elsevier}, volume = {346}, number = {3-4}, year = {2008}, doi = {10.1016/j.crma.2007.12.008}, language = {en}, }
Dan Goreac. A Kalman-type condition for stochastic approximate controllability. Comptes Rendus. Mathématique, Volume 346 (2008) no. 3-4, pp. 183-188. doi : 10.1016/j.crma.2007.12.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.12.008/
[1] Existence of stochastic control under state constraints, C. R. Acad. Sci. Paris, Sér. I, Volume 327 (1998), pp. 17-22
[2] Viability property for a backward stochastic differential equation and applications to partial differential equations, Probab. Theory Rel. Fields, Volume 116 (2000) no. 4, pp. 485-504
[3] Stochastic control with exit time and constraints. Application to small time attainability of sets, Appl. Math. Optim., Volume 49 (2004), pp. 99-112
[4] A characterization of approximately controllable linear stochastic differential equations (G. Da Prato; L. Tubaro, eds.), Stochastic Partial Differential Equations and Applications, Lecture Notes in Pure and Appl. Math., vol. 245, Chapman & Hall, 2006, pp. 253-260
[5] Infinite horizon backward stochastic differential equation and exponential convergence index assignment of stochastic control systems, Automatica, Volume 38 (2002), pp. 1417-1423
[6] Adapted solutions of a backward stochastic differential equation, Systems Control Lett., Volume 14 (1990), pp. 55-61
[7] Backward stochastic differential equation and exact controllability of stochastic control systems, Progr. Natur. Sci., Volume 4 (1994) no. 3, pp. 274-284
[8] Stochastic control and compatible subsets of constraints, Bull. Sci. Math., Volume 129 (2005), pp. 39-55
[9] Robust stabilization of uncertain systems, SIAM J. Contr. Optim., Volume 21 (1983), pp. 342-372
[10] Stochastic Controls (Hamiltonian Systems and HJB Equations), Springer-Verlag, Berlin, 1999
Cited by Sources:
Comments - Policy