Comptes Rendus
Topology/Dynamical Systems
Rigidity of magnetic flows for compact surfaces
[Rigidité des flots magnétiques sur des surfaces compactes]
Comptes Rendus. Mathématique, Volume 346 (2008) no. 5-6, pp. 313-316.

Soit ϕt:T1MT1M le flot magnétique du pair (g,Ω). Nous demonstrons que si ϕt preserve un feuilletage C2,1 de codimension 1, alors la courbure de (M,g) est une constante non positive et la forme Ω est le produit d'une constante par la forme d'aire de (M,g).

Let ϕt:T1MT1M be the magnetic flow of the pair (g,Ω). We show that if ϕt preserves a C2,1 codimension one foliation then (M,g) has constant, nonpositive Gaussian curvature and Ω is a constant multiple of the area form of (M,g). So if the genus of M is greater than one, the flow is either Anosov or conjugate to a horocycle flow. If M is a torus, the flow is actually geodesic and flat.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2008.01.011

José Barbosa Gomes 1 ; Rafael O. Ruggiero 2

1 Universidade Federal de Juiz de Fora, Dep. Matemática, Campus Universitário, Juiz de Fora, MG, Brasil 36036-330
2 Pontifícia Universidade Católica do Rio de Janeiro – PUC-Rio, Dep. Matemática, Rua Marquês de São Vicente, 225 – Gávea, Rio de Janeiro, RJ, Brasil 22453-900
@article{CRMATH_2008__346_5-6_313_0,
     author = {Jos\'e Barbosa Gomes and Rafael O. Ruggiero},
     title = {Rigidity of magnetic flows for compact surfaces},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {313--316},
     publisher = {Elsevier},
     volume = {346},
     number = {5-6},
     year = {2008},
     doi = {10.1016/j.crma.2008.01.011},
     language = {en},
}
TY  - JOUR
AU  - José Barbosa Gomes
AU  - Rafael O. Ruggiero
TI  - Rigidity of magnetic flows for compact surfaces
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 313
EP  - 316
VL  - 346
IS  - 5-6
PB  - Elsevier
DO  - 10.1016/j.crma.2008.01.011
LA  - en
ID  - CRMATH_2008__346_5-6_313_0
ER  - 
%0 Journal Article
%A José Barbosa Gomes
%A Rafael O. Ruggiero
%T Rigidity of magnetic flows for compact surfaces
%J Comptes Rendus. Mathématique
%D 2008
%P 313-316
%V 346
%N 5-6
%I Elsevier
%R 10.1016/j.crma.2008.01.011
%G en
%F CRMATH_2008__346_5-6_313_0
José Barbosa Gomes; Rafael O. Ruggiero. Rigidity of magnetic flows for compact surfaces. Comptes Rendus. Mathématique, Volume 346 (2008) no. 5-6, pp. 313-316. doi : 10.1016/j.crma.2008.01.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.01.011/

[1] M.L. Bialy Rigidity for periodic magnetic fields, Ergodic Theory Dynam. Systems, Volume 20 (2000), pp. 1619-1626

[2] E. Ghys Flots d'Anosov dont les feuilletages stables sont différentiables, Ann. Sci. École Norm. Sup., Volume 20 (1987), pp. 251-270

[3] E. Ghys Rigidité différentiable des groupes Fuchsiens, Publ. Math. I.H.E.S., Volume 78 (1993), pp. 163-185

[4] J.B. Gomes; R.O. Ruggiero Rigidity of surfaces whose geodesic flows preserve smooth foliations of codimension 1, Proc. Amer. Math. Soc., Volume 135 (2007), pp. 507-515

[5] S. Grognet Flots magnétiques en courbure négative, Ergodic Theory Dynam. Systems, Volume 19 (1999), pp. 413-436

[6] S. Hurder; A. Katok Differentiability, rigidity and Godbillon–Vey classes for Anosov flows, Publ. Math. I.H.E.S., Volume 72 (1990), pp. 5-61

[7] G.P. Paternain Magnetic rigidity of horocycle flows, Pacific J. Math., Volume 225 (2006) no. 2, pp. 301-323

[8] G.P. Paternain Regularity of weak foliations for thermostats, Nonlinearity, Volume 20 (2007), pp. 87-104

[9] G.P. Paternain; M. Paternain On Anosov energy levels of convex Hamiltonian systems, Math. Z., Volume 217 (1994), pp. 367-376

[10] G.P. Paternain; M. Paternain Anosov geodesic flows and twisted symplectic structures (F. Ledrappier; J. Lewowics; S. Newhouse, eds.), Pitman Research Notes in Mathematics Series, vol. 362, Addison-Wesley, Longman, Harlow, 1996, pp. 132-145

[11] G. Raby Invariance des classes de Godbillon–Vey par C1-diffeomorphismes, Ann. Inst. Fourier, Volume 38 (1998) no. 1, pp. 205-213

Cité par Sources :

Commentaires - Politique