This Note is partly an announcement. We describe the geodesic foliation of the translation surface associated to a triangular billiard in terms of real and holomorphic foliations defined by quadratic homogeneous vector fields on . Our technique allows, in particular, to state the existence of real foliations by curves on arising from homogeneous quadratic vector fields and having a dense set of periodic orbits.
Cette Note est partiellement une annonce. Nous décrivons le feuilletage géodésique de la surface de translation associée au billiard sur un triangle en termes de feuilletages réels et holomorphes définis par des champs de vecteurs quadratiques homogènes de . Nos techniques nous permettent, entre autres, de constater l'existence des feuilletages réels en courbes de définis par des champs de vecteurs homogènes, quadratiques et pour lesquels les orbites périodiques sont denses.
Accepted:
Published online:
Ferrán Valdez 1
@article{CRMATH_2008__346_5-6_317_0, author = {Ferr\'an Valdez}, title = {Billiard in a triangle and quadratic homogeneous foliations on $ {\mathbf{C}}^{2}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {317--322}, publisher = {Elsevier}, volume = {346}, number = {5-6}, year = {2008}, doi = {10.1016/j.crma.2008.01.013}, language = {en}, }
Ferrán Valdez. Billiard in a triangle and quadratic homogeneous foliations on $ {\mathbf{C}}^{2}$. Comptes Rendus. Mathématique, Volume 346 (2008) no. 5-6, pp. 317-322. doi : 10.1016/j.crma.2008.01.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.01.013/
[1] Periodic billiard orbits are dense in rational polygons, Trans. Amer. Math. Soc., Volume 350 (1998) no. 9, pp. 3523-3535
[2] Schwarz–Christoffel Mapping, Cambridge Monographs on Applied and Computational Mathematics, vol. 8, Cambridge University Press, Cambridge, 2002
[3] Rational billiards and flat structures, Handbook of Dynamical Systems, vol. 1A, North-Holland, Amsterdam, 2002, pp. 1015-1089
[4] Periodic billiard orbits in right triangles http://hal.ccsd.cnrs.fr/ccsd-00005014 (preprint)
[5] Topological transitivity of billiards in polygons, Mat. Zametki, Volume 18 (1975) no. 2, pp. 291-300
Cited by Sources:
Comments - Politique