Comptes Rendus
Partial Differential Equations
On the perturbation of the electromagnetic energy due to the presence of small inhomogeneities
Comptes Rendus. Mathématique, Volume 346 (2008) no. 5-6, pp. 287-292.

We consider solutions to the time-harmonic Maxwell problem in R3. For such solution we propose a rigorous derivation of the asymptotic expansions in the interesting practical situation when a finite number of inhomogeneities of small diameter are embedded in the entire space. Then, we describe the behavior of the electromagnetic energy caused by the presence of these inhomogeneities.

Nous considérons des solutions des équations de Maxwell dans R3 en présence d'un nombre fini d'inhomogénéités de petits diamètres. Pour de telles solutions, nous obtenons des formules asymptotiques rigoureuses. Puis, nous décrivons le comportement de l'énergie électromagnétique.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2008.01.019

Christian Daveau 1; Abdessatar Khelifi 2

1 Université de Cergy-Pontoise, département de mathématique, CNRS UMR 8088, 2, avenue Adolphe-Chauvin, 95302 Cergy-Pontoise, France
2 Département de mathématiques, université des sciences de Carthage, Bizerte, 7021, Tunisia
@article{CRMATH_2008__346_5-6_287_0,
     author = {Christian Daveau and Abdessatar Khelifi},
     title = {On the perturbation of the electromagnetic energy due to the presence of small inhomogeneities},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {287--292},
     publisher = {Elsevier},
     volume = {346},
     number = {5-6},
     year = {2008},
     doi = {10.1016/j.crma.2008.01.019},
     language = {en},
}
TY  - JOUR
AU  - Christian Daveau
AU  - Abdessatar Khelifi
TI  - On the perturbation of the electromagnetic energy due to the presence of small inhomogeneities
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 287
EP  - 292
VL  - 346
IS  - 5-6
PB  - Elsevier
DO  - 10.1016/j.crma.2008.01.019
LA  - en
ID  - CRMATH_2008__346_5-6_287_0
ER  - 
%0 Journal Article
%A Christian Daveau
%A Abdessatar Khelifi
%T On the perturbation of the electromagnetic energy due to the presence of small inhomogeneities
%J Comptes Rendus. Mathématique
%D 2008
%P 287-292
%V 346
%N 5-6
%I Elsevier
%R 10.1016/j.crma.2008.01.019
%G en
%F CRMATH_2008__346_5-6_287_0
Christian Daveau; Abdessatar Khelifi. On the perturbation of the electromagnetic energy due to the presence of small inhomogeneities. Comptes Rendus. Mathématique, Volume 346 (2008) no. 5-6, pp. 287-292. doi : 10.1016/j.crma.2008.01.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.01.019/

[1] H. Ammari; E. Iakovleva; D. Lesselier Two numerical methods for recovering small inclusions from the scattering amplitude at a fixed frequency, SIAM J. Sci. Comput., Volume 27 (2005), pp. 130-158

[2] H. Ammari; H. Kang Reconstruction of Small Inhomogeneities from Boundary Measurements, Lecture Notes in Mathematics, vol. 1846, Springer-Verlag, Berlin, 2004

[3] H. Ammari; A. Khelifi Electromagnetic scattering by small dielectric inhomogeneities, J. Math. Pures Appl., Volume 82 (2003), pp. 749-842

[4] H. Ammari; M.S. Vogelius; D. Volkov Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter II. The full Maxwell equations, J. Math. Pures Appl., Volume 80 (2001), pp. 769-814

[5] H. Ammari; D. Volkov Correction of order three for the expansion of two dimensional electromagnetic fields perturbed by the presence of inhomogeneities of small diameter, J. Comput. Phys., Volume 189 (2003), pp. 371-389

[6] D.J. Cedio-Fengya; S. Moskow; M. Vogelius Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction, Inverse Problems, Volume 14 (1998), pp. 553-595

[7] J.D. Cole Perturbation Methods in Applied Mathematics, Blaisdell, Walthan, MA, 1968

[8] A. Friedman; M. Vogelius Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence, Arch. Rat. Mech. Anal., Volume 105 (1989), pp. 299-326

[9] C. Hazard; M. Lenoir On the solution of time-harmonic scattering problems for Maxwell's equations, SIAM J. Math. Anal., Volume 27 (1996) no. 6, pp. 1597-1630

[10] A.M. Il'in Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, Translations of Mathematical Monographs, vol. 102, American Mathematical Society, Providence, RI, 1992

[11] A.B. Movchan; S.K. Serkov The Pólya–Szegö matrices in asymptotic models of dilute media, Eur. J. Appl. Math., Volume 8 (1997), pp. 595-621

[12] J.C. Nédélec Acoustic and Electromagnetic Equations. Integral Representation for Harmonic Problem, Springer-Verlag, New York, 2001

[13] J. Sanchez Hubert; E. Sanchez Palencia Vibration and Coupling of Continuous Systems, Springer-Verlag, 1989

[14] M. Vogelius; D. Volkov Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities, Math. Model. Numer. Anal., Volume 34 (2000), pp. 723-748

Cited by Sources:

Comments - Policy