[Structural tests in regression on functional variables]
In this Note we introduce a general approach to construct structural testing procedures in regression on functional variables. In the case of multivariate explanatory variables a well-known method consists in a comparison between a nonparametric estimator and a particular one. We adapt this approach to the case of functional explanatory variables. We give the asymptotic law of the proposed test statistic. The general approach used allows us to cover a large scope of possible applications as tests for no-effect, tests for linearity, ….
Nous proposons dans cette Note une approche générale pour la construction de tests de structure dans le cadre de la régression sur variable fonctionnelle. Comme on le fait souvent dans le cas où la variable explicative est multivariée, nous faisons apparaître dans notre statistique de test la différence entre un estimateur non-paramétrique et un estimateur particulier dépendant de l'hypothèse nulle à tester. Nous donnons la loi asymptotique de notre statistique de test sous des conditions générales, ce qui permet d'envisager l'application de notre approche dans des contextes variés.
Accepted:
Published online:
Laurent Delsol 1
@article{CRMATH_2008__346_5-6_343_0, author = {Laurent Delsol}, title = {Tests de structure en r\'egression sur variable fonctionnelle}, journal = {Comptes Rendus. Math\'ematique}, pages = {343--346}, publisher = {Elsevier}, volume = {346}, number = {5-6}, year = {2008}, doi = {10.1016/j.crma.2008.01.021}, language = {fr}, }
Laurent Delsol. Tests de structure en régression sur variable fonctionnelle. Comptes Rendus. Mathématique, Volume 346 (2008) no. 5-6, pp. 343-346. doi : 10.1016/j.crma.2008.01.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.01.021/
[1] A. Ait-Saïdi, F. Ferraty, R. Kassa, P. Vieu, Cross-validated estimations in the single functional index model, Statistics (2008), in press
[2] Testing hypotheses in the functional linear model, Scand. J. Statist., Volume 30 (2003), pp. 241-255
[3] Spline estimators for the functional linear model, Statist. Sinica, Volume 13 (2003) no. 3, pp. 571-591
[4] S.X. Chen, I. Van Keilegom, A goodness-of-fit test for parametric and semiparametric models in multiresponse regression, Inst. de Statistique, U.C.L., Discussion paper 0616, 2006
[5] Diagnostics for functional regression via residual processes, Comput. Statist. Data Anal., Volume 51 (2007) no. 10, pp. 4849-4863
[6] C. Crambes, A. Kneip, P. Sarda, Smoothing splines estimators for functional linear regression, Ann. Statist. (2008), in press
[7] L. Delsol, F. Ferraty, P. Vieu, Structural testing procedures in regression on functional variables, (2008), submitted for publication
[8] Functional nonparametric model for time series: a fractal approach for dimension reduction, Test, Volume 11 (2002) no. 2, pp. 317-344
[9] Nonparametric Functional Data Analysis, Springer-Verlag, New York, 2006
[10] Test of no-effect hypothesis, Afrika Stat., Volume 1 (2005) no. 1, pp. 67-76
[11] A note on variable selection in nonparametric regression with dependent data, Statist. Probab. Lett., Volume 57 (2002), pp. 259-268
[12] Central limit theorem for integrated square error of multivariate nonparametric density estimators, J. Multivariate Anal., Volume 14 (1984) no. 1, pp. 1-16
[13] Comparing nonparametric versus parametric regression fits, Ann. Statist., Volume 21 (1993) no. 4, pp. 1926-1947
[14] P. Lavergne, V. Patilea, Un test sur la significativité des variables explicatives en régression non-paramétrique, JDS Angers 2007, 2007
[15] Nonparametric regression estimation for dependent functional data: asymptotic normality, Stochastic Process. Appl., Volume 115 (2005) no. 1, pp. 155-177
[16] Some tools for functional data analysis, J. R. Statist. Soc. B., Volume 53 (1991), pp. 539-572
Cited by Sources:
Comments - Policy