In this Note, we prove that if g is uniformly continuous in z, uniformly with respect to and independent of y, the solution to the backward stochastic differential equation (BSDE) with generator g, is unique.
Dans cette Note, nous démontrons que pour une fonction g donnée, uniformément continue en z, uniformément en et indépendante de y l'équation différentielle stochastique, rétrograde de générateur g, admet une solution unique.
Accepted:
Published online:
Guangyan Jia 1
@article{CRMATH_2008__346_7-8_439_0, author = {Guangyan Jia}, title = {A uniqueness theorem for the solution of {Backward} {Stochastic} {Differential} {Equations}}, journal = {Comptes Rendus. Math\'ematique}, pages = {439--444}, publisher = {Elsevier}, volume = {346}, number = {7-8}, year = {2008}, doi = {10.1016/j.crma.2008.02.012}, language = {en}, }
Guangyan Jia. A uniqueness theorem for the solution of Backward Stochastic Differential Equations. Comptes Rendus. Mathématique, Volume 346 (2008) no. 7-8, pp. 439-444. doi : 10.1016/j.crma.2008.02.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.02.012/
[1] Quadratic BSDEs with convex generators and unbounded terminal conditions, 2007 (available in arXiv:) | arXiv
[2] Filtration consistent nonlinear expectations and related g-expectations, Probab. Theory Related Fields, Volume 123 (2002), pp. 1-27
[3] Viscosity solutions—a primer (I. Capuzzo Dolcetta; P.L. Lions, eds.), Viscosity Solutions and Applications, Lecture Notes in Mathematics, vol. 1660, Springer, Berlin, 1997, pp. 1-43
[4] Backward stochastic differential equations and partial differential equations with quadratic growth, Ann. Probab., Volume 28 (2000), pp. 259-276
[5] Backward stochastic differential equations with continuous coefficients, Statist. Probab. Lett., Volume 32 (1997) no. 4, pp. 425-430
[6] Backward stochastic differential equations and viscosity solutions of system of semilinear parabolic and elliptic PDEs of second order, Stochastic Analysis and Related Topics, VI, Birkhäuser, 1996, pp. 79-128
[7] Adapted solutions of a backward stochastic differential equations, System Control Lett., Volume 14 (1990) no. 1, pp. 55-61
[8] E. Pardoux, S. Peng, Some backward SDEs with non-Lipschitz, coefficients, Prepublication URA 225, 94-3, Universite de Provence
Cited by Sources:
Comments - Policy