[Un théorème d'existence généralisé des EDSRs]
Dans cette Note, nous traitons l'équation différentielle stochastique rétrograde en une dimension, où le coéfficient est Lipschitzien à gauche en y (peut-être discontinu) et Lipschitzien en z, sans croissance contrainte explicite. Nous montrons, dans ce cas, un théorème d'existence de la solution pour équation différentielle stochastique rétrograde.
In this Note, we deal with one-dimensional backward stochastic differential equations (BSDEs) where the coefficient is left-Lipschitz in y (may be discontinuous) and Lipschitz in z, but without explicit growth constraint. We prove, in this setting, an existence theorem for backward stochastic differential equations.
Accepté le :
Publié le :
Guangyan Jia 1
@article{CRMATH_2006__342_9_685_0, author = {Guangyan Jia}, title = {A generalized existence theorem of {BSDEs}}, journal = {Comptes Rendus. Math\'ematique}, pages = {685--688}, publisher = {Elsevier}, volume = {342}, number = {9}, year = {2006}, doi = {10.1016/j.crma.2006.02.020}, language = {en}, }
Guangyan Jia. A generalized existence theorem of BSDEs. Comptes Rendus. Mathématique, Volume 342 (2006) no. 9, pp. 685-688. doi : 10.1016/j.crma.2006.02.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.02.020/
[1] Backward stochastic differential equations in finance, Math. Finance, Volume 7 (1997) no. 1, pp. 1-71
[2] Backward stochastic differential equations and partial differential equations with quadratic growth, Ann. Probab., Volume 28 (2000), pp. 259-276
[3] Backward stochastic differential equations with continuous coefficients, Statist. Probab. Lett., Volume 34 (1997), pp. 425-430
[4] Backward stochastic differential equations and viscosity solutions, Stochastic Analysis and Related Topics, vol. VI, Birkhäuser, 1996, pp. 79-128
[5] Adapted solution of a backward stochastic differential equation, Systems Control Lett., Volume 14 (1990), pp. 55-61
[6] Nonlinear expectations, nonlinear evaluations and risk measures (M. Frittelli; W. Runggaldier, eds.), Stochastic Methods in Finance, Lecture Notes in Math., vol. 1856, Springer-Verlag, Berlin, 2004, pp. 165-253
- Anticipated backward stochastic differential equations with left-Lipschitz coefficient, Statistics Probability Letters, Volume 163 (2020), p. 7 (Id/No 108762) | DOI:10.1016/j.spl.2020.108762 | Zbl:1455.60079
- Optimal switching problem and related system of BSDEs with left-Lipschitz coefficients and mixed reflections, Statistics Probability Letters, Volume 137 (2018), pp. 70-78 | DOI:10.1016/j.spl.2018.01.006 | Zbl:1396.60043
- An existence theorem for multidimensional BSDEs with mixed reflections, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 354 (2016) no. 11, pp. 1101-1108 | DOI:10.1016/j.crma.2016.09.015 | Zbl:1356.60094
- A class of backward doubly stochastic differential equations with discontinuous coefficients, Acta Mathematicae Applicatae Sinica. English Series, Volume 30 (2014) no. 4, pp. 965-976 | DOI:10.1007/s10255-011-0136-0 | Zbl:1315.60073
- Lp solutions to backward stochastic differential equations with discontinuous generators, Statistics Probability Letters, Volume 83 (2013) no. 2, p. 503 | DOI:10.1016/j.spl.2012.10.026
- A generalized existence theorem of backward doubly stochastic differential equations, Acta Mathematica Sinica. English Series, Volume 26 (2010) no. 8, pp. 1525-1534 | DOI:10.1007/s10114-010-8217-1 | Zbl:1202.60090
- On the existence of solutions to BSDEs with generalized uniformly continuous generators, Statistics Probability Letters, Volume 80 (2010) no. 9-10, pp. 903-909 | DOI:10.1016/j.spl.2010.01.026 | Zbl:1208.60060
- A generalized existence theorem of reflected BSDEs with double obstacles, Statistics Probability Letters, Volume 78 (2008) no. 5, pp. 528-536 | DOI:10.1016/j.spl.2007.09.003 | Zbl:1136.60041
Cité par 8 documents. Sources : Crossref, zbMATH
Commentaires - Politique