In this Note, for a continuous semimartingale local time , we establish the integral as a rough path integral for any finite q-variation function g () by using Lyons' rough path integration. We therefore obtain the Tanaka–Meyer formula for a continuous function f if exists and is of finite q-variation, . The case when was established by Feng and Zhao [C.R. Feng, H.Z. Zhao, Two-parameter -variation path and integration of local times, Potential Analysis 25 (2006) 165–204] using the Young integral.
Dans cette Note, pour un temps local d'une semi-martingale continue, nous définissons l'intégrale pour toute fonction g de q-variation finie () en utilisant l'intégrale de Lyons pour des chemins non-réguliers. Nous obtenons alors la formule de Tanaka–Meyer pour une fonction continue f lorsque existe et est de q-variation finie avec . Le cas correspondant à utilise l'intégrale de Young (voir Feng et Zhao [C.R. Feng, H.Z. Zhao, Two-parameter -variation path and integration of local times, Potential Analysis 25 (2006) 165–204.]).
Accepted:
Published online:
Chunrong Feng 1, 2, 3; Huaizhong Zhao 1
@article{CRMATH_2008__346_7-8_431_0, author = {Chunrong Feng and Huaizhong Zhao}, title = {Rough path integral of local time}, journal = {Comptes Rendus. Math\'ematique}, pages = {431--434}, publisher = {Elsevier}, volume = {346}, number = {7-8}, year = {2008}, doi = {10.1016/j.crma.2008.02.015}, language = {en}, }
Chunrong Feng; Huaizhong Zhao. Rough path integral of local time. Comptes Rendus. Mathématique, Volume 346 (2008) no. 7-8, pp. 431-434. doi : 10.1016/j.crma.2008.02.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.02.015/
[1] Two-parameter -variation path and integration of local times, Potential Analysis, Volume 25 (2006), pp. 165-204
[2] An introduction to rough paths, Sèminaire de probabilitès XXXVII, Lecture Notes in Mathematics, vol. 1832, Springer-Verlag, 2003, pp. 1-59
[3] System Control and Rough Paths, Clarendon Press, Oxford, 2002
[4] Brownian Motion and Stochastic Calculus, Springer-Verlag, New York, 1998
[5] Continuous Martingales and Brownian Motion, Springer-Verlag, Berlin, 1994
Cited by Sources:
Comments - Policy