For subsets of a metric space with a continuous map, Bowen introduced a notion of entropy. In this Note we show that the Bowen entropy can be determined via the local entropies of measures. This result can be considered as an analogue of Billingsley's Theorem for the Hausdorff dimension.
Pour les sous-ensembles d'un espace métrique muni d'une application continue, Bowen avait introduit une notion d'entropie. Dans cette Note nous démontrons que l'entropie de Bowen peut être déterminée par les entropies locales de mesures. Ce résultat est un analogue du théorème de Billingsley pour la dimension de Hausdorff.
Accepted:
Published online:
Ji-Hua Ma 1; Zhi-Ying Wen 2
@article{CRMATH_2008__346_9-10_503_0, author = {Ji-Hua Ma and Zhi-Ying Wen}, title = {A {Billingsley} type theorem for {Bowen} entropy}, journal = {Comptes Rendus. Math\'ematique}, pages = {503--507}, publisher = {Elsevier}, volume = {346}, number = {9-10}, year = {2008}, doi = {10.1016/j.crma.2008.03.010}, language = {en}, }
Ji-Hua Ma; Zhi-Ying Wen. A Billingsley type theorem for Bowen entropy. Comptes Rendus. Mathématique, Volume 346 (2008) no. 9-10, pp. 503-507. doi : 10.1016/j.crma.2008.03.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.03.010/
[1] Ergodic Theory and Information, John Wiley and Sons Inc., New York, 1965
[2] Topological entropy for noncompact sets, Trans. Amer. Math. Soc., Volume 184 (1973), pp. 125-136
[3] On local entropy, Geometric Dynamics, Lecture Notes in Mathematics, vol. 1007, Springer, Berlin, 1983, pp. 30-38
[4] Geometric Measure Theory, Springer-Verlag, New York, 1969
[5] Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, Cambridge, 1995
[6] Dimension Theory in Dynamical Systems: Contemporary Views and Applications, The University of Chicago Press, Chicago and London, 1997
[7] On the topological entropy of saturated sets, Ergodic Theory Dynam. Systems, Volume 27 (2007), pp. 929-956
Cited by Sources:
Comments - Policy