We study random interlaced configurations on considering the eigenvalues of the main minors of Hermitian random matrices of the classical complex Lie algebras. We show that these random configurations are determinantal and give their correlation kernels.
Nous étudions des configurations aléatoires entrelacées sur en considérant les valeurs propres des mineurs principaux de matrices hermitiennes aléatoires des algèbres de Lie complexes classiques. Nous montrons que ces configurations aléatoires sont déterminantales et donnons leur noyau de corrélation.
Accepted:
Published online:
Manon Defosseux 1
@article{CRMATH_2008__346_13-14_783_0, author = {Manon Defosseux}, title = {Orbit measures and interlaced determinantal point processes}, journal = {Comptes Rendus. Math\'ematique}, pages = {783--788}, publisher = {Elsevier}, volume = {346}, number = {13-14}, year = {2008}, doi = {10.1016/j.crma.2008.05.016}, language = {en}, }
Manon Defosseux. Orbit measures and interlaced determinantal point processes. Comptes Rendus. Mathématique, Volume 346 (2008) no. 13-14, pp. 783-788. doi : 10.1016/j.crma.2008.05.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.05.016/
[1] GUEs and queues, Probab. Theory Related Fields, Volume 119 (2001) no. 2, pp. 256-274
[2] Tensor product multiplicities and convex polytopes in partition space, J. Geom. Phys., Volume 5 (1989), pp. 453-472
[3] Fluctuation properties of the TASEP with periodic initial configuration (arXiv:) | arXiv
[4] M. Defosseux, Orbit measures, random matrix theory and interlaced determinantal point processes, in preparation
[5] Determinantal correlations for classical projection processes (arXiv:) | arXiv
[6] Projections of orbits and asymptotic behaviour of multiplicities for compact connected Lie groups, Invent. Math., Volume 67 (1983), pp. 333-356
[7] Eigenvalues of GUE minors, Electron. J. Probab., Volume 11 (2006), pp. 1342-1371
[8] The birth of random matrix, Moscow Math. J., Volume 6 (2006) no. 3, pp. 553-566
Cited by Sources:
Comments - Policy