[Calcul d'erreur et régularité des fonctionnelles de Poisson : la méthode de la particule prêtée]
Nous proposons une nouvelle méthode pour appliquer le calcul fonctionnel lipschitzien des formes de Dirichlet locales aux mesures aléatoires de Poisson.
We propose a new method to apply the Lipschitz functional calculus of local Dirichlet forms to Poisson random measures.
Accepté le :
Publié le :
Nicolas Bouleau 1
@article{CRMATH_2008__346_13-14_779_0, author = {Nicolas Bouleau}, title = {Error calculus and regularity of {Poisson} functionals: the lent particle method}, journal = {Comptes Rendus. Math\'ematique}, pages = {779--782}, publisher = {Elsevier}, volume = {346}, number = {13-14}, year = {2008}, doi = {10.1016/j.crma.2008.05.020}, language = {en}, }
Nicolas Bouleau. Error calculus and regularity of Poisson functionals: the lent particle method. Comptes Rendus. Mathématique, Volume 346 (2008) no. 13-14, pp. 779-782. doi : 10.1016/j.crma.2008.05.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.05.020/
[1] Analysis and geometry on configuration spaces, J. Funct. Anal., Volume 154 (1998) no. 2, pp. 444-500
[2] Error Calculus for Finance and Physics: The Language of Dirichlet Forms, De Gruyter, 2003
[3] Dirichlet Forms and Analysis on Wiener Space, De Gruyter, 1991
[4] A criterion of density for solutions of Poisson-driven SDEs, Probab. Theory Relat. Fields, Volume 118 (2000), pp. 406-426
[5] Malliavin calculus on the Wiener–Poisson space and its application to canonical SDE with jumps, Stochastic Process. Appl., Volume 116 (2006), pp. 1743-1769
[6] Construction of diffusions on configuration spaces, Osaka J. Math., Volume 37 (2000), pp. 273-314
[7] Anticipative calculus for the Poisson process based on the Fock space, Sém. Probabilités XXIV, Lecture Notes in Math., vol. 1426, Springer, 1990, pp. 154-165
[8] On the existence of smooth densities for jump processes, Probab. Theory Relat. Fields, Volume 105 (1996), pp. 481-511
[9] A pointwise equivalence of gradients on configuration spaces, C. R. Acad. Sci. Paris, Volume 327 (1998), pp. 677-682
[10] Canonical Lévy processes and Malliavin calculus, Stochastic Process. Appl., Volume 117 (2007), pp. 165-187
- Iteration of the Lent Particle Method for Existence of Smooth Densities of Poisson Functionals, Potential Analysis, Volume 38 (2013) no. 1, p. 169 | DOI:10.1007/s11118-011-9269-2
- Application of the lent particle method to Poisson-driven SDEs, Probability Theory and Related Fields, Volume 151 (2011) no. 3-4, p. 403 | DOI:10.1007/s00440-010-0303-x
- Dirichlet Forms for Poisson Measures and Lévy Processes: The Lent Particle Method, Stochastic Analysis with Financial Applications, Volume 65 (2011), p. 3 | DOI:10.1007/978-3-0348-0097-6_1
- Energy image density property and the lent particle method for Poisson measures, Journal of Functional Analysis, Volume 257 (2009) no. 4, p. 1144 | DOI:10.1016/j.jfa.2009.03.004
Cité par 4 documents. Sources : Crossref
Commentaires - Politique