[Calcul d'erreur et régularité des fonctionnelles de Poisson : la méthode de la particule prêtée]
We propose a new method to apply the Lipschitz functional calculus of local Dirichlet forms to Poisson random measures.
Nous proposons une nouvelle méthode pour appliquer le calcul fonctionnel lipschitzien des formes de Dirichlet locales aux mesures aléatoires de Poisson.
Accepté le :
Publié le :
Nicolas Bouleau 1
@article{CRMATH_2008__346_13-14_779_0, author = {Nicolas Bouleau}, title = {Error calculus and regularity of {Poisson} functionals: the lent particle method}, journal = {Comptes Rendus. Math\'ematique}, pages = {779--782}, publisher = {Elsevier}, volume = {346}, number = {13-14}, year = {2008}, doi = {10.1016/j.crma.2008.05.020}, language = {en}, }
Nicolas Bouleau. Error calculus and regularity of Poisson functionals: the lent particle method. Comptes Rendus. Mathématique, Volume 346 (2008) no. 13-14, pp. 779-782. doi : 10.1016/j.crma.2008.05.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.05.020/
[1] Analysis and geometry on configuration spaces, J. Funct. Anal., Volume 154 (1998) no. 2, pp. 444-500
[2] Error Calculus for Finance and Physics: The Language of Dirichlet Forms, De Gruyter, 2003
[3] Dirichlet Forms and Analysis on Wiener Space, De Gruyter, 1991
[4] A criterion of density for solutions of Poisson-driven SDEs, Probab. Theory Relat. Fields, Volume 118 (2000), pp. 406-426
[5] Malliavin calculus on the Wiener–Poisson space and its application to canonical SDE with jumps, Stochastic Process. Appl., Volume 116 (2006), pp. 1743-1769
[6] Construction of diffusions on configuration spaces, Osaka J. Math., Volume 37 (2000), pp. 273-314
[7] Anticipative calculus for the Poisson process based on the Fock space, Sém. Probabilités XXIV, Lecture Notes in Math., vol. 1426, Springer, 1990, pp. 154-165
[8] On the existence of smooth densities for jump processes, Probab. Theory Relat. Fields, Volume 105 (1996), pp. 481-511
[9] A pointwise equivalence of gradients on configuration spaces, C. R. Acad. Sci. Paris, Volume 327 (1998), pp. 677-682
[10] Canonical Lévy processes and Malliavin calculus, Stochastic Process. Appl., Volume 117 (2007), pp. 165-187
- Iteration of the Lent Particle Method for Existence of Smooth Densities of Poisson Functionals, Potential Analysis, Volume 38 (2013) no. 1, p. 169 | DOI:10.1007/s11118-011-9269-2
- Application of the lent particle method to Poisson-driven SDEs, Probability Theory and Related Fields, Volume 151 (2011) no. 3-4, p. 403 | DOI:10.1007/s00440-010-0303-x
- Dirichlet Forms for Poisson Measures and Lévy Processes: The Lent Particle Method, Stochastic Analysis with Financial Applications, Volume 65 (2011), p. 3 | DOI:10.1007/978-3-0348-0097-6_1
- Energy image density property and the lent particle method for Poisson measures, Journal of Functional Analysis, Volume 257 (2009) no. 4, p. 1144 | DOI:10.1016/j.jfa.2009.03.004
Cité par 4 documents. Sources : Crossref
Commentaires - Politique