In this Note we give a simple proof of a conjecture by A. Căldăraru stating the compatibility between the modified Hochschild–Kostant–Rosenberg isomorphism and the action of Hochschild cohomology on Hochschild homology in the case of Calabi–Yau manifolds and smooth projective curves.
Dans cette Note nous donnons une démonstration simple d'une conjecture d'A. Căldăraru énoncant la compatibilité entre l'isomorphisme modifié de Hochschild–Kostant–Rosenberg et l'action de la cohomologie de Hochschild sur l'homologie de Hochschild dans le cas des variétés de Calabi–Yau et des courbes projectives régulières.
Accepted:
Published online:
Emanuele Macri` 1; Marc Nieper-Wißkirchen 2; Paolo Stellari 3
@article{CRMATH_2008__346_15-16_863_0, author = {Emanuele Macri` and Marc Nieper-Wi{\ss}kirchen and Paolo Stellari}, title = {The module structure of {Hochschild} homology in some examples}, journal = {Comptes Rendus. Math\'ematique}, pages = {863--866}, publisher = {Elsevier}, volume = {346}, number = {15-16}, year = {2008}, doi = {10.1016/j.crma.2008.05.017}, language = {en}, }
TY - JOUR AU - Emanuele Macri` AU - Marc Nieper-Wißkirchen AU - Paolo Stellari TI - The module structure of Hochschild homology in some examples JO - Comptes Rendus. Mathématique PY - 2008 SP - 863 EP - 866 VL - 346 IS - 15-16 PB - Elsevier DO - 10.1016/j.crma.2008.05.017 LA - en ID - CRMATH_2008__346_15-16_863_0 ER -
Emanuele Macri`; Marc Nieper-Wißkirchen; Paolo Stellari. The module structure of Hochschild homology in some examples. Comptes Rendus. Mathématique, Volume 346 (2008) no. 15-16, pp. 863-866. doi : 10.1016/j.crma.2008.05.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.05.017/
[1] Hochschild cohomology and Atiyah classes | arXiv
[2] The Mukai pairing II: The Hochschild–Kostant–Rosenberg isomorphism, Adv. Math., Volume 194 (2005), pp. 34-66
[3] Remarks on derived equivalences of Ricci-flat manifolds | arXiv
[4] Deformation quantization of Poisson manifolds, Lett. Math. Phys., Volume 66 (2003), pp. 157-216
[5] The Atiyah class, Hochschild cohomology and the Riemann–Roch theorem | arXiv
[6] The relative Riemann–Roch theorem from Hochschild homology | arXiv
[7] On the Rozansky–Witten weight systems | arXiv
[8] The continuous Hochschild cochain complex of a scheme, Canadian J. Math., Volume 54 (2002), pp. 1319-1337
Cited by Sources:
⁎ This work was supported by the SFB/TR 45 “Periods, Moduli Spaces and Arithmetic of Algebraic Varieties” of the DFG (German Research Foundation).
Comments - Policy