We announce results on the structure of CAT(0) groups, CAT(0) lattices and of the underlying spaces. Our statements rely notably on a general study of the full isometry groups of proper CAT(0) spaces. Classical statements about Hadamard manifolds are established for singular spaces; new arithmeticity and rigidity statements are obtained.
Nous présentons des résultats de structure sur les groupes CAT(0), les réseaux CAT(0) et sur les espaces sous-jacents. Nos énoncés reposent notamment sur une étude générale des groupes d'isométries pleins des espaces CAT(0) propres. Nous démontrons des résultats qui généralisent des énoncés classiques sur les variétés de Hadamard et proposons de nouveaux théorèmes d'arithméticité et rigidité.
Accepted:
Published online:
Pierre-Emmanuel Caprace 1; Nicolas Monod 2
@article{CRMATH_2008__346_15-16_857_0, author = {Pierre-Emmanuel Caprace and Nicolas Monod}, title = {Some properties of non-positively curved lattices}, journal = {Comptes Rendus. Math\'ematique}, pages = {857--862}, publisher = {Elsevier}, volume = {346}, number = {15-16}, year = {2008}, doi = {10.1016/j.crma.2008.07.006}, language = {en}, }
Pierre-Emmanuel Caprace; Nicolas Monod. Some properties of non-positively curved lattices. Comptes Rendus. Mathématique, Volume 346 (2008) no. 15-16, pp. 857-862. doi : 10.1016/j.crma.2008.07.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.07.006/
[1] Density properties for certain subgroups of semi-simple groups without compact components, Ann. of Math. (2), Volume 72 (1960), pp. 179-188
[2] Metric Spaces of Non-Positive Curvature, Grundlehren der Mathematischen Wissenschaften, vol. 319, Springer, Berlin, 1999
[3] Euclidean de Rham factor of a lattice of nonpositive curvature, J. Differential Geom., Volume 18 (1983) no. 2, pp. 209-220
[4] The de Rham decomposition theorem for metric spaces, GAFA, Volume 18 (2008) no. 1, pp. 120-143
[5] Some relations between the metric structure and the algebraic structure of the fundamental group in manifolds of nonpositive curvature, Bull. Amer. Math. Soc., Volume 77 (1971), pp. 545-552
[6] Asymptotic invariants of infinite groups, Sussex, 1991 (London Math. Soc. Lecture Note Ser.), Volume vol. 182, Cambridge Univ. Press, Cambridge (1993), pp. 1-295
[7] Compact manifolds of nonpositive curvature, J. Differential Geom., Volume 7 (1972), pp. 211-228
[8] Arithmeticity vs. nonlinearity for irreducible lattices, Geom. Dedicata, Volume 112 (2005), pp. 225-237
[9] Problem section, Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102, Princeton Univ. Press, Princeton, NJ, 1982, pp. 669-706
Cited by Sources:
Comments - Politique