Comptes Rendus
Functional Analysis
Smallest singular value of random matrices with independent columns
Comptes Rendus. Mathématique, Volume 346 (2008) no. 15-16, pp. 853-856.

We study the smallest singular value of a square random matrix with i.i.d. columns drawn from an isotropic symmetric log-concave distribution. We prove a deviation inequality in terms of the isotropic constant of the distribution.

On étudie la plus petite valeur singulière d'une matrice carrée aléatoire dont les colonnes sont des vecteurs aléatoires i.i.d. suivant une loi à densité log-concave isotrope. On démontre une inégalité de déviation en fonction de la constante d'isotropie.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2008.07.011

Radosław Adamczak 1; Olivier Guédon 2; Alexander Litvak 3; Alain Pajor 4; Nicole Tomczak-Jaegermann 3

1 Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland
2 Université Pierre-et-Marie-Curie, Paris 6, Institut de mathématiques de Jussieu, 4, place Jussieu, 75005 Paris, France
3 Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
4 Équipe d'analyse et mathématiques appliquées, Université Paris Est, 5, boulevard Descartes, Champs-sur-Marne, 77454 Marne-la-Vallee cedex 2, France
@article{CRMATH_2008__346_15-16_853_0,
     author = {Rados{\l}aw Adamczak and Olivier Gu\'edon and Alexander Litvak and Alain Pajor and Nicole Tomczak-Jaegermann},
     title = {Smallest singular value of random matrices with independent columns},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {853--856},
     publisher = {Elsevier},
     volume = {346},
     number = {15-16},
     year = {2008},
     doi = {10.1016/j.crma.2008.07.011},
     language = {en},
}
TY  - JOUR
AU  - Radosław Adamczak
AU  - Olivier Guédon
AU  - Alexander Litvak
AU  - Alain Pajor
AU  - Nicole Tomczak-Jaegermann
TI  - Smallest singular value of random matrices with independent columns
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 853
EP  - 856
VL  - 346
IS  - 15-16
PB  - Elsevier
DO  - 10.1016/j.crma.2008.07.011
LA  - en
ID  - CRMATH_2008__346_15-16_853_0
ER  - 
%0 Journal Article
%A Radosław Adamczak
%A Olivier Guédon
%A Alexander Litvak
%A Alain Pajor
%A Nicole Tomczak-Jaegermann
%T Smallest singular value of random matrices with independent columns
%J Comptes Rendus. Mathématique
%D 2008
%P 853-856
%V 346
%N 15-16
%I Elsevier
%R 10.1016/j.crma.2008.07.011
%G en
%F CRMATH_2008__346_15-16_853_0
Radosław Adamczak; Olivier Guédon; Alexander Litvak; Alain Pajor; Nicole Tomczak-Jaegermann. Smallest singular value of random matrices with independent columns. Comptes Rendus. Mathématique, Volume 346 (2008) no. 15-16, pp. 853-856. doi : 10.1016/j.crma.2008.07.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.07.011/

[1] G. Aubrun Sampling convex bodies: a random matrix approach, Proc. Amer. Math. Soc., Volume 135 (2007), pp. 1293-1303 (electronic)

[2] E. Gluskin; V. Milman Geometric probability and random cotype 2, GAFA, Lecture Notes in Math., vol. 1850, Springer, Berlin, 2004, pp. 123-138

[3] O. Guédon; M. Rudelson Lp-moments of random vectors via majorizing measures, Adv. Math., Volume 208 (2007), pp. 798-823

[4] M. Junge Volume estimates for log-concave densities with application to iterated convolutions, Pacific J. Math., Volume 169 (1995), pp. 107-133

[5] A.E. Litvak; A. Pajor; M. Rudelson; N. Tomczak-Jaegermann Smallest singular value of random matrices and geometry of random polytopes, Adv. Math., Volume 195 (2005), pp. 491-523

[6] S. Mendelson; A. Pajor On singular values of matrices with independent rows, Bernoulli, Volume 12 (2006), pp. 761-773

[7] G. Paouris, personal communication

[8] M. Rudelson Invertibility of random matrices: norm of the inverse, Ann. of Math., Volume 168 (2008), pp. 575-600

[9] M. Rudelson; R. Vershynin The Littlewood–Offord problem and invertibility of random matrices, Adv. Math., Volume 218 (2008), pp. 600-633

[10] T. Tao, V. Vu, Inverse Littlewood–Offord theorems and the condition number of random discrete matrices, Ann. of Math., in press

Cited by Sources:

Comments - Policy