Let be the classical Wiener space, assume that is an adapted perturbation of identity satisfying the Girsanov identity. Then, U is invertible if and only if the kinetic energy of u is equal to the relative entropy of the measure induced with the action of U on the Wiener measure μ, in other words U is invertible if and only if
Soit l'espace de Wiener classique, et soit une perturbation d'identité adaptée satisfaisant á l'identité de Girsanov. Alors U est inversible si et seulement si l'énergie cinétique de u est égale à l'entropie relative de la mesure induite par l'action de U sur la mesure de Wiener μ ; en d'autres termes U est inversible si et seulement si
Accepted:
Published online:
A. Suleyman Üstünel 1
@article{CRMATH_2008__346_15-16_897_0, author = {A. Suleyman \"Ust\"unel}, title = {A necessary and sufficient condition for invertibility of adapted perturbations of identity on {Wiener} space}, journal = {Comptes Rendus. Math\'ematique}, pages = {897--900}, publisher = {Elsevier}, volume = {346}, number = {15-16}, year = {2008}, doi = {10.1016/j.crma.2008.07.013}, language = {en}, }
TY - JOUR AU - A. Suleyman Üstünel TI - A necessary and sufficient condition for invertibility of adapted perturbations of identity on Wiener space JO - Comptes Rendus. Mathématique PY - 2008 SP - 897 EP - 900 VL - 346 IS - 15-16 PB - Elsevier DO - 10.1016/j.crma.2008.07.013 LA - en ID - CRMATH_2008__346_15-16_897_0 ER -
A. Suleyman Üstünel. A necessary and sufficient condition for invertibility of adapted perturbations of identity on Wiener space. Comptes Rendus. Mathématique, Volume 346 (2008) no. 15-16, pp. 897-900. doi : 10.1016/j.crma.2008.07.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.07.013/
[1] Realization of positive random variables via absolutely continuous transformations of measure on Wiener space, Probability Surveys, Volume 3 (2006), pp. 170-205 (electronic)
[2] Stochastic differential equations for the non linear filtering problem, Osaka J. Math., Volume 9 (1972), pp. 19-40
[3] Stochastic Differential Equations and Diffusion Processes, North-Holland, Amsterdam, 1981 (Kodansha Ltd., Tokyo)
[4] Transformation of Measure on Wiener Space, Springer-Verlag, 1999
[5] The invertibility of adapted perturbations of identity on the Wiener space, C. R. Acad. Sci. Paris, Ser. I, Volume 342 (2006), pp. 689-692
[6] Sufficient conditions for the invertibility of adapted perturbations of identity on the Wiener space, Probab. Theory Relat. Fields, Volume 139 (2007), pp. 207-234
Cited by Sources:
Comments - Policy