We present two inequalities for liftings of smooth maps from the torus into the unit circle . Using these inequalities, we answer a question of J. Bourgain, H. Brezis, and P. Mironescu in [J. Bourgain, H. Brezis, P. Mironescu, Lifting, degree, and distributional Jacobian revisited, Comm. Pure Appl. Math. 58 (2005) 529–551] and establish an estimate of liftings in the spirit of R.R. Coifman and Y. Meyer [R.R. Coifman, Y. Meyer, Une généralisation du théorème de Calderon sur l'intégrale de Cauchy, in: Fourier Analysis, in: Proc. Sem., El Escorial, vol. 1, Asoc. Mat. Espa nola, Madrid, 1980, pp. 87–116].
Nous présentons deux inégalités pour des relèvements des applications régulières du tore dans le cercle unité . Ces inégalités nous permettent de répondre à une question de J. Bourgain, H. Brezis, et P. Mironescu dans [J. Bourgain, H. Brezis, P. Mironescu, Lifting, degree, and distributional Jacobian revisited, Comm. Pure Appl. Math. 58 (2005) 529–551] et d'établir une estimation des relèvements dans l'esprit de R.R. Coifman et Y. Meyer [R.R. Coifman, Y. Meyer, Une généralisation du théorème de Calderon sur l'intégrale de Cauchy, in : Fourier Analysis, in : Proc. Sem., El Escorial, vol. 1, Asoc. Mat. Espa nola, Madrid, 1980, pp. 87–116].
Published online:
Hoai-Minh Nguyen 1
@article{CRMATH_2008__346_17-18_957_0, author = {Hoai-Minh Nguyen}, title = {Inequalities related to liftings and applications}, journal = {Comptes Rendus. Math\'ematique}, pages = {957--962}, publisher = {Elsevier}, volume = {346}, number = {17-18}, year = {2008}, doi = {10.1016/j.crma.2008.07.026}, language = {en}, }
Hoai-Minh Nguyen. Inequalities related to liftings and applications. Comptes Rendus. Mathématique, Volume 346 (2008) no. 17-18, pp. 957-962. doi : 10.1016/j.crma.2008.07.026. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.07.026/
[1] On the equation and application to control of phases, J. Amer. Math. Soc., Volume 16 (2003), pp. 393-426
[2] maps with values into the circle: minimal connections, lifting, and the Ginzburg–Landau equation, Publ. Math. Inst. Hautes Etudes Sci., Volume 99 (2004), pp. 1-115
[3] Lifting, degree, and distributional Jacobian revisited, Comm. Pure Appl. Math., Volume 58 (2005), pp. 529-551
[4] A new estimate for the topological degree, C. R. Acad. Sci. Paris, Ser. I, Volume 340 (2005), pp. 787-791
[5] Degree theory and BMO, Part I: Compact manifolds without boundaries, Selecta Math., Volume 1 (1995), pp. 197-263
[6] Une généralisation du théorème de Calderon sur l'intégrale de Cauchy, Fourier Analysis, Proc. Sem., El Escorial, vol. 1, Asoc. Mat. Espa nola, Madrid, 1980, pp. 87-116
[7] Sobolev maps on manifolds: degree, approximation, lifting, Perspectives in Nonlinear Partial Differential Equations, Contemp. Math., vol. 446, Amer. Math. Soc., Providence, RI, 2007, pp. 413-436 (In honor of Ham Brezis)
[8] Lifting default for -valued maps, C. R. Acad. Sci. Paris, Ser. I, Volume 346 (2008) | DOI
[9] Optimal constant in a new estimate for the degree, J. d'Analyse Math., Volume 101 (2007), pp. 367-395
Cited by Sources:
Comments - Policy