On démontre que, pour une large classe de groupes, le nombre de Reidemeister d'un automorphisme ϕ est égal au nombre de points fixes de dimension finie de
It is proved for a wide class of groups that the Reidemeister number of an automorphism ϕ is equal to the number of finite-dimensional fixed points of
Accepté le :
Publié le :
Alexander Fel'shtyn 1 ; Evgenij Troitsky 2
@article{CRMATH_2008__346_19-20_1033_0, author = {Alexander Fel'shtyn and Evgenij Troitsky}, title = {Th\'eorie de {Burnside{\textendash}Frobenius} tordue pour les groupes virtuellement polycycliques}, journal = {Comptes Rendus. Math\'ematique}, pages = {1033--1038}, publisher = {Elsevier}, volume = {346}, number = {19-20}, year = {2008}, doi = {10.1016/j.crma.2008.09.003}, language = {fr}, }
TY - JOUR AU - Alexander Fel'shtyn AU - Evgenij Troitsky TI - Théorie de Burnside–Frobenius tordue pour les groupes virtuellement polycycliques JO - Comptes Rendus. Mathématique PY - 2008 SP - 1033 EP - 1038 VL - 346 IS - 19-20 PB - Elsevier DO - 10.1016/j.crma.2008.09.003 LA - fr ID - CRMATH_2008__346_19-20_1033_0 ER -
Alexander Fel'shtyn; Evgenij Troitsky. Théorie de Burnside–Frobenius tordue pour les groupes virtuellement polycycliques. Comptes Rendus. Mathématique, Volume 346 (2008) no. 19-20, pp. 1033-1038. doi : 10.1016/j.crma.2008.09.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.09.003/
[1] Dynamical zeta functions, Nielsen theory and Reidemeister torsion, Mem. Amer. Math. Soc., Volume 147 (2000) no. 699, p. xii+146
[2] The Reidemeister number of any automorphism of a Gromov hyperbolic group is infinite, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), Volume 279 (2001) no. 6, pp. 229-240 250 (Geom. i Topol.)
[3] Trace formulae, Zeta functions, congruences and Reidemeister torsion in Nielsen theory, Forum Math., Volume 10 (1998) no. 6, pp. 641-663
[4] Reidemeister numbers of Baumslag–Solitar groups, Algebra Discrete Math., Volume 3 (2006), pp. 36-48
[5] A twisted Burnside theorem for countable groups and Reidemeister numbers, Bonn, 2003 (K. Consani; M. Marcolli; Yu. Manin, eds.), Vieweg, Braunschweig (2006), pp. 141-154 (Preprint MPIM2004-65)
[6] Twisted Burnside theorem for type II1 groups: an example, Math. Res. Lett., Volume 13 (2006) no. 5, pp. 719-728
[7] Twisted conjugacy classes in exponential growth groups, Bull. London Math. Soc., Volume 35 (2003) no. 2, pp. 261-268
[8] Character Theory of Finite Groups, Academic Press, 1976
[9] On the automorphism group of generalised Baumslag–Solitar groups, 2005 (E-print arxiv:) | arXiv
[10] Most automorphisms of a hyperbolic group have very simple dynamics, Ann. Sci. École Norm. Sup., Volume 33 (2000), pp. 507-517
[11] Small cancellations over relatively hyperbolic groups and embedding theorems, 2004 (arxiv e-print) | arXiv
[12] Polycyclic Groups, Cambridge Tracts in Mathematics, vol. 82, Cambridge University Press, Cambridge, 1983
[13] Trees, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003 (Translated from the French original by John Stillwell, Corrected 2nd printing of the 1980 English translation)
[14] Noncommutative Riesz theorem and weak Burnside type theorem on twisted conjugacy, Funct. Anal. Appl., Volume 40 (2006) no. 2, pp. 117-125
- New directions in Nielsen–Reidemeister theory, Topology and its Applications, Volume 157 (2010) no. 10-11, p. 1724 | DOI:10.1016/j.topol.2010.02.018
Cité par 1 document. Sources : Crossref
Commentaires - Politique