Let . When , and , the -semi-norm of φ is not controlled by , where [J. Bourgain, H. Brezis, P. Mironescu, Lifting in Sobolev spaces, J. Anal. Math. 80 (2000) 37–86]. [This question is related to existence, for -valued maps g, of a lifting φ as smooth as allowed by g.] In [J. Bourgain, H. Brezis, P. Mironescu, Lifting, degree, and distributional Jacobian revisited, Commun. Pure Appl. Math. 58 (2005) 529–551], the authors suggested that does control a weaker quantity, namely . Existence of such control is due to J. Bourgain and H. Brezis [J. Bourgain, H. Brezis, On the equation div and application to control of phases, J. Amer. Math. Soc. 16 (2003) 393–426] when , and to H.-M. Nguyen [H.-M. Nguyen, Inequalities related to liftings and applications, C. R. Acad. Sci. Paris, Ser. I 346 (17–18) (2008) 957–962] when , and or when , and . In this Note, we establish existence of control for all , and N.
Soit . Si , et , alors la semi-norme n'est pas contrôlée par , où [J. Bourgain, H. Brezis, P. Mironescu, Lifting in Sobolev spaces, J. Anal. Math. 80 (2000) 37–86]. [Cette question est liée à l'existence, pour des g à valeurs dans , de relèvements φ aussi réguliers que g le permet.] Dans [J. Bourgain, H. Brezis, P. Mironescu, Lifting, degree, and distributional Jacobian revisited, Commun. Pure Appl. Math. 58 (2005) 529–551], il est conjecturé que contrôle une quantité plus faible que , plus spécifiquement . L'existence d'un tel contrôle est due à J. Bourgain and H. Brezis [J. Bourgain, H. Brezis, On the equation div and application to control of phases, J. Amer. Math. Soc. 16 (2003) 393–426] pour et et à H.-M. Nguyen [H.-M. Nguyen, Inequalities related to liftings and applications, C. R. Acad. Sci. Paris, Ser. I 346 (17–18) (2008) 957–962] pour , et ou pour , et . Dans cette Note, nous montrons l'existence d'un contrôle pour tout , et N.
Published online:
Petru Mironescu 1
@article{CRMATH_2008__346_19-20_1039_0, author = {Petru Mironescu}, title = {Lifting default for $ {\mathbb{S}}^{1}$-valued maps}, journal = {Comptes Rendus. Math\'ematique}, pages = {1039--1044}, publisher = {Elsevier}, volume = {346}, number = {19-20}, year = {2008}, doi = {10.1016/j.crma.2008.08.001}, language = {en}, }
Petru Mironescu. Lifting default for $ {\mathbb{S}}^{1}$-valued maps. Comptes Rendus. Mathématique, Volume 346 (2008) no. 19-20, pp. 1039-1044. doi : 10.1016/j.crma.2008.08.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.08.001/
[1] Some questions related to the lifting problem in Sobolev spaces (H. Berestycki; M. Bertsch; F. Browder; L. Nirenberg, eds.), Perspectives in Nonlinear Partial Differential Equations, Contemporary Mathematics, vol. 446, Amer. Math. Soc., 2007, pp. 125-152
[2] On the equation div and application to control of phases, J. Amer. Math. Soc., Volume 16 (2003), pp. 393-426
[3] Lifting in Sobolev spaces, J. Anal. Math., Volume 80 (2000), pp. 37-86
[4] Lifting, degree, and distributional Jacobian revisited, Commun. Pure Appl. Math., Volume 58 (2005), pp. 529-551
[5] On some questions of topology for -valued fractional Sobolev spaces, Rev. R. Acad. Cien., Serie A Mat., Volume 95 (2001), pp. 121-143
[6] H. Brezis, P. Mironescu, H.-M. Nguyen, in preparation
[7] Fluides parfaits incompressibles, Astérisque, Volume 230 (1995)
[8] Sobolev maps on manifolds: degree, approximation, lifting (H. Berestycki; M. Bertsch; F. Browder; L. Nirenberg; L.A. Peletier; L. Véron, eds.), Perspectives in Nonlinear Partial Differential Equations, In honor of Haïm Brezis, Contemporary Mathematics, vol. 446, Amer. Math. Society, 2007, pp. 413-436
[9] P. Mironescu, Lifting of -valued maps in sums of Sobolev spaces, J. European Math. Soc., submitted for publication
[10] Inequalities related to liftings and applications, C. R. Acad. Sci. Paris, Ser. I, Volume 346 (2008) no. 17–18, pp. 957-962
[11] Theory of Function Spaces, Birkhäuser Verlag, 1983
Cited by Sources:
Comments - Policy