We present a synthetic approach to invariant manifold theorems, based upon the notion of a generating map.
Nous présentons une approche synthétique de la théorie des variétés invariantes, fondée sur la notion d'application génératrice.
Accepted:
Published online:
Marc Chaperon 1
@article{CRMATH_2008__346_21-22_1175_0, author = {Marc Chaperon}, title = {Invariant manifold theory via generating maps}, journal = {Comptes Rendus. Math\'ematique}, pages = {1175--1180}, publisher = {Elsevier}, volume = {346}, number = {21-22}, year = {2008}, doi = {10.1016/j.crma.2008.09.030}, language = {en}, }
Marc Chaperon. Invariant manifold theory via generating maps. Comptes Rendus. Mathématique, Volume 346 (2008) no. 21-22, pp. 1175-1180. doi : 10.1016/j.crma.2008.09.030. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.09.030/
[1] , Ergodic Theory Dynam. Systems (A. Fathi; J.-C. Yoccoz, eds.) (Dynamical Systems: Michael Herman Memorial Volume), Volume 24, Cambridge University Press, 2004, pp. 1359-1394
[2] The Lipschitzian core of some invariant manifold theorems, Ergodic Theory Dynam. Systems, Volume 28 (2008), pp. 1419-1441
[3] M. Chaperon, S. López de Medrano, Invariant manifolds and semi-conjugacies, in preparation
[4] Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J., Volume 21 (1971), pp. 193-225
[5] Metric Structures for Riemannian and Non-Riemannian Spaces, Birkhäuser, 1999
[6] Invariant Manifolds, Lecture Notes in Mathematics, vol. 583, Springer-Verlag, 1977
[7] A new proof of the stable manifold theorem, Z. Angew. Math. Phys., Volume 47 (1996) no. 4, pp. 497-513
Cited by Sources:
Comments - Policy