[Corrélation entre deux problèmes quasilinéaires elliptiques avec terme de source relatif à la fonction ou à son gradient]
Thanks to a change of unknown we compare two elliptic quasilinear problems with Dirichlet data in a bounded domain of
A l'aide d'un changement d'inconnue nous comparons deux problèmes elliptiques quasilinéaires avec conditions de Dirichlet dans un domaine borné Ω de
Publié le :
Haydar Abdel Hamid 1 ; Marie Françoise Bidaut-Véron 1
@article{CRMATH_2008__346_23-24_1251_0, author = {Haydar Abdel Hamid and Marie Fran\c{c}oise Bidaut-V\'eron}, title = {Correlation between two quasilinear elliptic problems with a source term involving the function or its gradient}, journal = {Comptes Rendus. Math\'ematique}, pages = {1251--1256}, publisher = {Elsevier}, volume = {346}, number = {23-24}, year = {2008}, doi = {10.1016/j.crma.2008.10.002}, language = {en}, }
TY - JOUR AU - Haydar Abdel Hamid AU - Marie Françoise Bidaut-Véron TI - Correlation between two quasilinear elliptic problems with a source term involving the function or its gradient JO - Comptes Rendus. Mathématique PY - 2008 SP - 1251 EP - 1256 VL - 346 IS - 23-24 PB - Elsevier DO - 10.1016/j.crma.2008.10.002 LA - en ID - CRMATH_2008__346_23-24_1251_0 ER -
%0 Journal Article %A Haydar Abdel Hamid %A Marie Françoise Bidaut-Véron %T Correlation between two quasilinear elliptic problems with a source term involving the function or its gradient %J Comptes Rendus. Mathématique %D 2008 %P 1251-1256 %V 346 %N 23-24 %I Elsevier %R 10.1016/j.crma.2008.10.002 %G en %F CRMATH_2008__346_23-24_1251_0
Haydar Abdel Hamid; Marie Françoise Bidaut-Véron. Correlation between two quasilinear elliptic problems with a source term involving the function or its gradient. Comptes Rendus. Mathématique, Volume 346 (2008) no. 23-24, pp. 1251-1256. doi : 10.1016/j.crma.2008.10.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.10.002/
[1] Some remarks on elliptic problems with critical growth in the gradient, J. Differential Equations, Volume 222 (2006), pp. 21-62
[2] Blow-up for
[3] Semi-stable and extremal solutions of reaction equations involving the p-Laplacian, Comm. Pure Appl. Anal., Volume 6 (2007), pp. 43-67
[4] Renormalized solutions of elliptic equations with general measure data, Ann. Scuola Norm. Sup. Pisa, Volume 28 (1999), pp. 741-808
[5] On the solutions of quasilinear elliptic equations with a polynomial-type reaction term, Adv. Differential Equations, Volume 9 (2004), pp. 1201-1234
[6] Nonlinear problems having natural growth in the gradient: an existence result when the source terms are small, Nonlinear Anal., Volume 42 (2000), pp. 1309-1326
[7] A general mountain path principle for locating and classifying critical points, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 6 (1989) no. 5, pp. 321-330
[8] On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer type problem, Proc. Roy. Soc. Edinburgh Sect. A, Volume 129 (1999), pp. 787-809
[9] Regularity of the extremal solution of semilinear elliptic equations, C. R. Acad. Sci. Paris Sér. I Math., Volume 330 (2000), pp. 997-2002
[10] Nonlinear equations with natural growth terms and measure data, Electron. J. Differential Equations Conf., Volume 9 (2002), pp. 183-202
[11] Boundedness of the extremal solutions of some p-Laplacian problems, Nonlinear Anal., Volume 67 (2007), pp. 281-294
- Topological structure of the set of solution for singular elliptic equations with a convective term, Journal of Mathematical Analysis and Applications, Volume 552 (2025) no. 2, p. 129738 | DOI:10.1016/j.jmaa.2025.129738
- Multiplicity of Solutions to Elliptic Problems Involving the 1-Laplacian with a Critical Gradient Term, Advanced Nonlinear Studies, Volume 17 (2017) no. 2, p. 333 | DOI:10.1515/ans-2017-0011
- Comparison results and improved quantified inequalities for semilinear elliptic equations, Mathematische Annalen, Volume 367 (2017) no. 1-2, p. 311 | DOI:10.1007/s00208-016-1394-1
- Quasilinear elliptic system in exterior domains with dependence on the gradient, Mathematische Nachrichten, Volume 287 (2014) no. 4, p. 361 | DOI:10.1002/mana.201100006
- Existence and Multiplicity for Elliptic Problems with Quadratic Growth in the Gradient, Communications in Partial Differential Equations, Volume 38 (2013) no. 2, p. 244 | DOI:10.1080/03605302.2012.738754
- Keller–Osserman type conditions for differential inequalities with gradient terms on the Heisenberg group, Journal of Differential Equations, Volume 250 (2011) no. 6, p. 2643 | DOI:10.1016/j.jde.2011.01.006
- NONLINEAR WEIGHTED p-LAPLACIAN ELLIPTIC INEQUALITIES WITH GRADIENT TERMS, Communications in Contemporary Mathematics, Volume 12 (2010) no. 03, p. 501 | DOI:10.1142/s0219199710003841
Cité par 7 documents. Sources : Crossref
Commentaires - Politique