Irregular sampling and “stable sampling” of band-limited functions have been studied by H.J. Landau [H.J. Landau, Necessary density conditions for sampling and interpolation of certain entire functions, Acta Math. 117 (1967) 37–52]. We prove that quasicrystals are sets of stable sampling.
Répondant à une question posée par H.J. Landau [H.J. Landau, Necessary density conditions for sampling and interpolation of certain entire functions, Acta Math. 117 (1967) 37–52] sur le problème de l'échantillonnage irrégulier des fonctions “band-limited”, nous prouvons que les quasicristaux sont des ensembles d'échantillonnage stable.
Accepted:
Published online:
Basarab Matei 1; Yves Meyer 2
@article{CRMATH_2008__346_23-24_1235_0, author = {Basarab Matei and Yves Meyer}, title = {Quasicrystals are sets of stable sampling}, journal = {Comptes Rendus. Math\'ematique}, pages = {1235--1238}, publisher = {Elsevier}, volume = {346}, number = {23-24}, year = {2008}, doi = {10.1016/j.crma.2008.10.006}, language = {en}, }
Basarab Matei; Yves Meyer. Quasicrystals are sets of stable sampling. Comptes Rendus. Mathématique, Volume 346 (2008) no. 23-24, pp. 1235-1238. doi : 10.1016/j.crma.2008.10.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.10.006/
[1] Collected Works of Arne Beurling, 2 vols. (L. Carleson et al., eds.), Birkhäuser, 1989
[2] Necessary density conditions for sampling and interpolation of certain entire functions, Acta Math., Volume 117 (1967), pp. 37-52
[3] Nombres de Pisot, nombres de Salem et Analyse Harmonique, Lecture Notes in Mathematics, vol. 117, 1970
[4] Trois problèmes sur les sommes trigonométriques, Astérisque, vol. 1, SMF, 1973
[5] A universal sampling of band-limited signals, C. R. Acad. Sci. Paris, Ser. I, Volume 342 (2006), pp. 927-931
Cited by Sources:
Comments - Policy