Comptes Rendus
Complex Analysis
A solution of Gromov's Vaserstein problem
Comptes Rendus. Mathématique, Volume 346 (2008) no. 23-24, pp. 1239-1243.

We announce that a null-homotopic holomorphic mapping from a finite dimensional reduced Stein space into SLn(C) can be factored into a finite product of unipotent matrices with holomorphic entries.

Nous annonçons qu'une application holomorphe homotopiquement triviale d'un espace de Stein réduit de dimension finie vers SLn(C) peut être factorisée par un produit fini de matrices unipotentes à coefficients holomorphes.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2008.10.017

Björn Ivarsson 1; Frank Kutzschebauch 1

1 Departement Mathematik, Universität Bern, Sidlerstrasse 5, CH–3012 Bern, Switzerland
@article{CRMATH_2008__346_23-24_1239_0,
     author = {Bj\"orn Ivarsson and Frank Kutzschebauch},
     title = {A solution of {Gromov's} {Vaserstein} problem},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1239--1243},
     publisher = {Elsevier},
     volume = {346},
     number = {23-24},
     year = {2008},
     doi = {10.1016/j.crma.2008.10.017},
     language = {en},
}
TY  - JOUR
AU  - Björn Ivarsson
AU  - Frank Kutzschebauch
TI  - A solution of Gromov's Vaserstein problem
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 1239
EP  - 1243
VL  - 346
IS  - 23-24
PB  - Elsevier
DO  - 10.1016/j.crma.2008.10.017
LA  - en
ID  - CRMATH_2008__346_23-24_1239_0
ER  - 
%0 Journal Article
%A Björn Ivarsson
%A Frank Kutzschebauch
%T A solution of Gromov's Vaserstein problem
%J Comptes Rendus. Mathématique
%D 2008
%P 1239-1243
%V 346
%N 23-24
%I Elsevier
%R 10.1016/j.crma.2008.10.017
%G en
%F CRMATH_2008__346_23-24_1239_0
Björn Ivarsson; Frank Kutzschebauch. A solution of Gromov's Vaserstein problem. Comptes Rendus. Mathématique, Volume 346 (2008) no. 23-24, pp. 1239-1243. doi : 10.1016/j.crma.2008.10.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.10.017/

[1] P.M. Cohn On the structure of the GL2 of a ring, Inst. Hautes Études Sci. Publ. Math., Volume 30 (1966), pp. 5-53

[2] Y. Eliashberg; M. Gromov Embeddings of Stein manifolds of dimension n into the affine space of dimension 3n/2+1, Ann. of Math. (2), Volume 136 (1992) no. 1, pp. 123-135

[3] F. Forstnerič The Oka principle for sections of stratified fiber bundles (Pure Appl. Math. Quart., in press) | arXiv

[4] F. Forstnerič; J. Prezelj Extending holomorphic sections from complex subvarieties, Math. Z., Volume 236 (2001) no. 1, pp. 43-68

[5] O. Forster Topologische Methoden in der Theorie Steinscher Räume, Nice, 1970 (Actes du Congrès International des Mathématiciens), Volume vol. 2, Gauthier-Villars, Paris (1971), pp. 613-618

[6] O. Forster; K.J. Ramspott Analytische Modulgarben und Endromisbündel, Invent. Math., Volume 2 (1966), pp. 145-170

[7] O. Forster; K.J. Ramspott Okasche Paare von Garben nicht-abelscher Gruppen, Invent. Math., Volume 1 (1966), pp. 260-286

[8] O. Forster; K.J. Ramspott Homotopieklassen von Idealbasen in Steinschen Algebren, Invent. Math., Volume 5 (1968), pp. 255-276

[9] O. Forster; K.J. Ramspott Über die Anzahl der Erzeugenden von projektiven Steinschen Moduln, Arch. Math. (Basel), Volume 19 (1968), pp. 417-422

[10] F. Grunewald; J. Mennicke; L. Vaserstein On the groups SL2(Z[x]) and SL2(k[x,y]), Israel J. Math., Volume 86 (1994) no. 1–3, pp. 157-193

[11] H. Grauert Approximationssätze für holomorphe Funktionen mit Werten in komplexen Räumen, Math. Ann., Volume 133 (1957), pp. 139-159

[12] H. Grauert Holomorphe Funktionen mit Werten in komplexen Lieschen Gruppen, Math. Ann., Volume 133 (1957), pp. 450-472

[13] H. Grauert Analytische Faserungen über holomorph-vollständigen Räumen, Math. Ann., Volume 135 (1958), pp. 263-273

[14] M. Gromov Oka's principle for holomorphic sections of elliptic bundles, J. Amer. Math. Soc., Volume 2 (1989) no. 4, pp. 851-897

[15] J. Rosenberg Algebraic K-Theory and its Applications, Graduate Texts in Mathematics, vol. 147, Springer-Verlag, New York, 1994

[16] J. Schürmann Embeddings of Stein spaces into affine spaces of minimal dimension, Math. Ann., Volume 307 (1997) no. 3, pp. 381-399

[17] A.A. Suslin The structure of the special linear group over rings of polynomials, Izv. Akad. Nauk SSSR Ser. Mat., Volume 41 (1977) no. 2, pp. 235-252 (477, English translation: Math. USSR Izv., 11, 1977, pp. 221-238)

[18] W. Thurston; L. Vaserstein On K1-theory of the Euclidean space, Topology Appl., Volume 23 (1986) no. 2, pp. 145-148

[19] L. Vaserstein Reduction of a matrix depending on parameters to a diagonal form by addition operations, Proc. Amer. Math. Soc., Volume 103 (1988) no. 3, pp. 741-746

[20] D. Wright The amalgamated free product structure of GL2(k[X1,,Xn]) and the weak Jacobian theorem for two variables, J. Pure Appl. Algebra, Volume 12 (1978) no. 3, pp. 235-251

Cited by Sources:

Comments - Policy