Comptes Rendus
Équations aux dérivées partielles
Étude d'un système non linéaire de Boussinesq–Stefan
[Study of a nonlinear Boussinesq–Stefan system with second member having a growth]
Comptes Rendus. Mathématique, Volume 347 (2009) no. 1-2, pp. 39-44.

We give a few existence results for solutions for a class of Boussinesq–Stefan systems, with suitable conditions on the forcing terms in the right-hand side of the momentum equation depending on the temperature.

Nous étudions une classe de systèmes de Boussinesq–Stefan dont le second membre de l'équation de conservation de la quantité de mouvement est une force de gravité qui dépend de la temperature.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2008.11.004

Abdelatif Attaoui 1

1 Analyse et modèles stochastiques, CNRS-UMR 6085, Université de Rouen, 76801 Saint-Etienne-du-Rouvray, France
@article{CRMATH_2009__347_1-2_39_0,
     author = {Abdelatif Attaoui},
     title = {\'Etude d'un syst\`eme non lin\'eaire de {Boussinesq{\textendash}Stefan}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {39--44},
     publisher = {Elsevier},
     volume = {347},
     number = {1-2},
     year = {2009},
     doi = {10.1016/j.crma.2008.11.004},
     language = {fr},
}
TY  - JOUR
AU  - Abdelatif Attaoui
TI  - Étude d'un système non linéaire de Boussinesq–Stefan
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 39
EP  - 44
VL  - 347
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crma.2008.11.004
LA  - fr
ID  - CRMATH_2009__347_1-2_39_0
ER  - 
%0 Journal Article
%A Abdelatif Attaoui
%T Étude d'un système non linéaire de Boussinesq–Stefan
%J Comptes Rendus. Mathématique
%D 2009
%P 39-44
%V 347
%N 1-2
%I Elsevier
%R 10.1016/j.crma.2008.11.004
%G fr
%F CRMATH_2009__347_1-2_39_0
Abdelatif Attaoui. Étude d'un système non linéaire de Boussinesq–Stefan. Comptes Rendus. Mathématique, Volume 347 (2009) no. 1-2, pp. 39-44. doi : 10.1016/j.crma.2008.11.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.11.004/

[1] H.-W. Alt; S. Luckhaus Quasilinear elliptic-parabolic differential equations, Math. Z., Volume 183 (1983), pp. 311-341

[2] D. Blanchard; F. Murat; H. Redwane Existence and uniqueness of a renormalized solution for a fairly general class of nonlinear parabolic problems, J. Differential Equations, Volume 177 (2001), pp. 331-374

[3] D. Blanchard; A. Porretta Stefan problems with nonlinear diffusion and convection, J. Differential Equations, Volume 210 (2005), pp. 383-428

[4] B. Climent; E. Fernández-Cara Some existence and uniqueness results for a time-dependent coupled problem of the Navier–Stokes kind, Math. Models Methods Appl. Sci., Volume 8 (1998) no. 4, pp. 603-622

[5] A. Dall' Aglio; L. Orsina Nonlinear parabolic equations with natural growth conditions and L1 data, Nonlinear Anal., Volume 27 (1986), pp. 59-73

[6] J.-I. Diaz; G. Galiano Existence and uniqueness of solutions of the Boussinesq system with nonlinear thermal diffusion, Topol. Methods Nonlinear Anal., Volume 11 (1998) no. 1, pp. 59-82

[7] R.-J. DiPerna; P.-L. Lions On the cauchy problem for Boltzmann equations: global existence and weak stability, Ann. of Math., Volume 130 (1989) no. 1, pp. 321-366

[8] R.-J. DiPerna; P.-L. Lions Ordinar differential equations, Sobolev spaces and transport theory, Invent. Math., Volume 98 (1989) no. 1, pp. 511-547

[9] P.-L. Lions Mathematical Topics in Fluid Mechanics, vol. 1: Incompressible Models, Oxford Lecture Ser. Math. Appl., vol. 3, 1996

[10] S. Segura de León; J. Toledo Regularity for entropy solutions of parabolic p-Laplacian type equations, Publ. Mat., Volume 43 (1999), pp. 665-683

[11] J. Simon Compact sets in the space Lp(0,T;B), Ann. Mat. Pura Appl., Volume 146 (1987), pp. 65-96

[12] R. Temam Navier–Stokes Equations, Theory and Numerical Analysis, North-Holland, Amsterdam, 1984

Cited by Sources:

Comments - Policy