We give a few existence results for solutions for a class of Boussinesq–Stefan systems, with suitable conditions on the forcing terms in the right-hand side of the momentum equation depending on the temperature.
Nous étudions une classe de systèmes de Boussinesq–Stefan dont le second membre de l'équation de conservation de la quantité de mouvement est une force de gravité qui dépend de la temperature.
Accepted:
Published online:
Abdelatif Attaoui 1
@article{CRMATH_2009__347_1-2_39_0, author = {Abdelatif Attaoui}, title = {\'Etude d'un syst\`eme non lin\'eaire de {Boussinesq{\textendash}Stefan}}, journal = {Comptes Rendus. Math\'ematique}, pages = {39--44}, publisher = {Elsevier}, volume = {347}, number = {1-2}, year = {2009}, doi = {10.1016/j.crma.2008.11.004}, language = {fr}, }
Abdelatif Attaoui. Étude d'un système non linéaire de Boussinesq–Stefan. Comptes Rendus. Mathématique, Volume 347 (2009) no. 1-2, pp. 39-44. doi : 10.1016/j.crma.2008.11.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.11.004/
[1] Quasilinear elliptic-parabolic differential equations, Math. Z., Volume 183 (1983), pp. 311-341
[2] Existence and uniqueness of a renormalized solution for a fairly general class of nonlinear parabolic problems, J. Differential Equations, Volume 177 (2001), pp. 331-374
[3] Stefan problems with nonlinear diffusion and convection, J. Differential Equations, Volume 210 (2005), pp. 383-428
[4] Some existence and uniqueness results for a time-dependent coupled problem of the Navier–Stokes kind, Math. Models Methods Appl. Sci., Volume 8 (1998) no. 4, pp. 603-622
[5] Nonlinear parabolic equations with natural growth conditions and data, Nonlinear Anal., Volume 27 (1986), pp. 59-73
[6] Existence and uniqueness of solutions of the Boussinesq system with nonlinear thermal diffusion, Topol. Methods Nonlinear Anal., Volume 11 (1998) no. 1, pp. 59-82
[7] On the cauchy problem for Boltzmann equations: global existence and weak stability, Ann. of Math., Volume 130 (1989) no. 1, pp. 321-366
[8] Ordinar differential equations, Sobolev spaces and transport theory, Invent. Math., Volume 98 (1989) no. 1, pp. 511-547
[9] Mathematical Topics in Fluid Mechanics, vol. 1: Incompressible Models, Oxford Lecture Ser. Math. Appl., vol. 3, 1996
[10] Regularity for entropy solutions of parabolic p-Laplacian type equations, Publ. Mat., Volume 43 (1999), pp. 665-683
[11] Compact sets in the space , Ann. Mat. Pura Appl., Volume 146 (1987), pp. 65-96
[12] Navier–Stokes Equations, Theory and Numerical Analysis, North-Holland, Amsterdam, 1984
Cited by Sources:
Comments - Policy