We consider a network of vibrating elastic strings. Using a generalized Poisson formula and some Tauberian theorem, we give a Weyl formula with optimal remainder estimate. As a consequence we prove some observability and stabilization results.
Nous considérons un réseau de cordes. En utilisant une formule de Poisson généralisée et un théorème Taubérien nous prouvons une formule de Weyl avec reste optimal. Comme conséquence nous prouvons un résultat d'observablité et de stabilisation.
Accepted:
Published online:
Kaïs Ammari 1; Mouez Dimassi 2
@article{CRMATH_2009__347_1-2_33_0, author = {Ka{\"\i}s Ammari and Mouez Dimassi}, title = {Observation of some elastic networks}, journal = {Comptes Rendus. Math\'ematique}, pages = {33--37}, publisher = {Elsevier}, volume = {347}, number = {1-2}, year = {2009}, doi = {10.1016/j.crma.2008.11.008}, language = {en}, }
Kaïs Ammari; Mouez Dimassi. Observation of some elastic networks. Comptes Rendus. Mathématique, Volume 347 (2009) no. 1-2, pp. 33-37. doi : 10.1016/j.crma.2008.11.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.11.008/
[1] K. Ammari, M. Dimassi, Weyl formula with optimal remainder estimate of some elastic networks and applications, submitted for publication
[2] Stabilization of star-shaped networks of strings, Differential Integral Equations, Volume 17 (2004), pp. 1395-1410
[3] Stabilization of second order evolution equations by a class of unbounded feedbacks, ESAIM COCV, Volume 6 (2001), pp. 361-386
[4] Fourier Series in Control Theory, Springer Monographs in Mathematics, Springer, New York, 2005
[5] Introduction to Diophantine Approximations, Addison-Wiley, Reading, MA, 1966
[6] Spectre des réseaux topologiques finis, Bull. Sci. Math., Volume 111 (1987), pp. 401-413
[7] Le spectre du laplacien sur un graphe, Orsay, 1983 (Lecture Notes in Math.), Volume vol. 1096, Springer, Berlin (1984), pp. 521-539
Cited by Sources:
Comments - Policy