Comptes Rendus
Differential Geometry
Concentration and isoperimetry are equivalent assuming curvature lower bound
Comptes Rendus. Mathématique, Volume 347 (2009) no. 1-2, pp. 73-76.

It is well known that isoperimetric inequalities imply in a very general measure-metric-space setting appropriate concentration inequalities. The former bound the boundary measure of sets as a function of their measure, whereas the latter bound the measure of sets separated from sets having half the total measure, as a function of their mutual distance. We show that under a lower bound condition on the Bakry–Émery curvature tensor of a Riemannian manifold equipped with a density, completely general concentration inequalities imply back their isoperimetric counterparts, up to dimension independent bounds. Our method is entirely geometric, continuing the approach of Gromov, Buser and Morgan.

Il est connu que les inégalités isopérimétriques impliquent dans un cadre espace-mesure-métrique très général des inégalités de concentration correspondantes. Les premières bornent la mesure de bord d'un ensemble en fonction de sa mesure, tandis que les dernières bornent la mesure d'un ensemble qui est séparé d'un ensemble ayant la moitié de la mesure totale, en fonction de leur distance mutuelle. Nous montrons que sous une condition de borne inférieure sur le tenseur de courbure de Bakry–Émery d'une variété riemannienne équipée d'une densité, les inégalités de concentration complètement générales impliquent inversement leurs analogues isopérimétriques, à des constantes près qui sont indépendantes de la dimension. Notre méthode est entièrement géométrique, continuant l'approche de Gromov, Buser et Morgan.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2008.11.014

Emanuel Milman 1

1 School of Mathematics, Institute for Advanced Study, Einstein Drive, Simonyi Hall, Princeton, NJ 08540, USA
@article{CRMATH_2009__347_1-2_73_0,
     author = {Emanuel Milman},
     title = {Concentration and isoperimetry are equivalent assuming curvature lower bound},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {73--76},
     publisher = {Elsevier},
     volume = {347},
     number = {1-2},
     year = {2009},
     doi = {10.1016/j.crma.2008.11.014},
     language = {en},
}
TY  - JOUR
AU  - Emanuel Milman
TI  - Concentration and isoperimetry are equivalent assuming curvature lower bound
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 73
EP  - 76
VL  - 347
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crma.2008.11.014
LA  - en
ID  - CRMATH_2009__347_1-2_73_0
ER  - 
%0 Journal Article
%A Emanuel Milman
%T Concentration and isoperimetry are equivalent assuming curvature lower bound
%J Comptes Rendus. Mathématique
%D 2009
%P 73-76
%V 347
%N 1-2
%I Elsevier
%R 10.1016/j.crma.2008.11.014
%G en
%F CRMATH_2009__347_1-2_73_0
Emanuel Milman. Concentration and isoperimetry are equivalent assuming curvature lower bound. Comptes Rendus. Mathématique, Volume 347 (2009) no. 1-2, pp. 73-76. doi : 10.1016/j.crma.2008.11.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.11.014/

[1] D. Bakry; M. Émery Diffusions hypercontractives, Séminaire de probabilités, XIX, 1983/84, Lecture Notes in Math., vol. 1123, Springer, Berlin, 1985, pp. 177-206

[2] D. Bakry; M. Ledoux Lévy–Gromov's isoperimetric inequality for an infinite-dimensional diffusion generator, Invent. Math., Volume 123 (1996) no. 2, pp. 259-281

[3] F. Barthe Levels of concentration between exponential and Gaussian, Ann. Fac. Sci. Toulouse Math. (6), Volume 10 (2001) no. 3, pp. 393-404

[4] F. Barthe; A.V. Kolesnikov Mass transport and variants of the logarithmic Sobolev inequality, J. Geom. Anal., Volume 18 (2008) no. 4, pp. 921-979 | arXiv

[5] V. Bayle, Propriétés de concavité du profil isopérimétrique et applications, PhD thesis, Institut Joseph Fourier, Grenoble, 2004

[6] S.G. Bobkov Isoperimetric and analytic inequalities for log-concave probability measures, Ann. Probab., Volume 27 (1999) no. 4, pp. 1903-1921

[7] P. Buser A note on the isoperimetric constant, Ann. Sci. École Norm. Sup. (4), Volume 15 (1982) no. 2, pp. 213-230

[8] X. Chen; F.-Y. Wang Optimal integrability condition for the log-Sobolev inequality, Quart. J. Math., Volume 58 (2007) no. 1, pp. 17-22

[9] M. Gromov, Paul Lévy isoperimetric inequality, preprint, I.H.E.S., 1980

[10] M. Ledoux The Concentration of Measure Phenomenon, Mathematical Surveys and Monographs, vol. 89, American Mathematical Society, Providence, RI, 2001

[11] M. Ledoux Spectral gap, logarithmic Sobolev constant, and geometric bounds, Surveys in Differential Geometry, vol. IX, Int. Press, Somerville, MA, 2004, pp. 219-240

[12] E. Milman, A geometric approach to isoperimetric inequalities, manuscript, 2008

[13] E. Milman On the role of convexity in isoperimetry, spectral-gap and concentration, 2008 (submitted for publication) | arXiv

[14] E. Milman Uniform tail-decay of Lipschitz functions implies Cheeger's isoperimetric inequality under convexity assumptions, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 346 (2008), pp. 989-994

[15] E. Milman; S. Sodin An isoperimetric inequality for uniformly log-concave measures and uniformly convex bodies, J. Funct. Anal., Volume 254 (2008) no. 5, pp. 1235-1268 | arXiv

[16] F. Morgan Manifolds with density, Notices Amer. Math. Soc., Volume 52 (2005) no. 8, pp. 853-858

[17] F.-Y. Wang Logarithmic Sobolev inequalities on noncompact Riemannian manifolds, Probab. Theory Related Fields, Volume 109 (1997) no. 3, pp. 417-424

[18] F.-Y. Wang Logarithmic Sobolev inequalities: conditions and counterexamples, J. Operator Theory, Volume 46 (2001) no. 1, pp. 183-197

Cited by Sources:

Comments - Policy