[Metriques para-Kähler Einstein sur des variétés homogènes]
Une structure para-Kählérienne sur une variété M est la donnée d'un paire , où g est une metrique pseudo-riemannienne et K est un champ parallel d'endomorphismes anti-symétriques qui satisfait . On donne une description de toutes les structures para-Kählériennes invariantes sur des variétés homogènes , où G est un group de Lie semisimple.
A para-Kähler structure on a manifold M is a pair where g is a pseudo-Riemannian metric and K is a parallel field of skew-symmetric endomorphisms with . We give a description of all invariant para-Kähler structures on homogeneous manifolds of semisimple Lie groups G.
Accepté le :
Publié le :
Dimitri V. Alekseevsky 1 ; Costantino Medori 2 ; Adriano Tomassini 2
@article{CRMATH_2009__347_1-2_69_0, author = {Dimitri V. Alekseevsky and Costantino Medori and Adriano Tomassini}, title = {Para-K\"ahler {Einstein} metrics on homogeneous manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {69--72}, publisher = {Elsevier}, volume = {347}, number = {1-2}, year = {2009}, doi = {10.1016/j.crma.2008.11.016}, language = {en}, }
TY - JOUR AU - Dimitri V. Alekseevsky AU - Costantino Medori AU - Adriano Tomassini TI - Para-Kähler Einstein metrics on homogeneous manifolds JO - Comptes Rendus. Mathématique PY - 2009 SP - 69 EP - 72 VL - 347 IS - 1-2 PB - Elsevier DO - 10.1016/j.crma.2008.11.016 LA - en ID - CRMATH_2009__347_1-2_69_0 ER -
Dimitri V. Alekseevsky; Costantino Medori; Adriano Tomassini. Para-Kähler Einstein metrics on homogeneous manifolds. Comptes Rendus. Mathématique, Volume 347 (2009) no. 1-2, pp. 69-72. doi : 10.1016/j.crma.2008.11.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.11.016/
[1] Bi-isotropic decompositions of semisimple Lie algebras and homogeneous bi-Lagrangian manifolds, J. Algebra, Volume 313 (2007), pp. 8-27
[2] Homogeneous para-Kähler Einstein manifolds | arXiv
[3] Invariant Kähler–Einstein metrics on compact homogeneous spaces, Funct. Anal. Appl., Volume 20 (1986), pp. 171-182
[4] Bochner–Kähler metrics, J. Amer. Math. Soc., Volume 14 (2001), pp. 623-715
[5] Special geometry of Euclidean supersymmetry I: Vector multiplets, J. High Energy Phys. (JHEP), Volume 03 (2004), p. 028
[6] A survey on paracomplex geometry, Rocky Mountain J. Math., Volume 26 (1996), pp. 83-115
[7] Dipolarizations in semisimple Lie algebras and homogeneous para-Kähler manifolds, J. Lie Theory, Volume 9 (1999), pp. 215-232
[8] Sur la forme hermitienne canonique des espaces homogènes complexes, Canad. J. Math., Volume 7 (1955), pp. 562-576
[9] Sur les structures presque paracomplexes, C. R. Acad. Sci. Paris, Volume 234 (1952), pp. 2517-2519
Cité par Sources :
☆ This work was partially supported by Leverhulme Trust, EM/9/2005/0069, by the MIUR Project “Geometric Properties of Real and Complex Manifolds” and by GNSAGA of INdAM.
Commentaires - Politique