The boundary observability of the wave equation has been studied by many authors. A method of choice is to use the multiplier method (cf. Komornik (1994)). Recently, in Ramdani et al. (2005), a first Fourier based proof is given in the case where the domain is a square, thanks to a new Hautus type test. We give here a new self-contained proof with an Ingham type approach in the more general case where the domain is a product of intervals; this leads, in contrary to the proof in Ramdani et al., to explicit time and constants. However, we do not reach the optimal time which can be obtained for this problem by the multiplier method.
L'observabilité frontière de l'équation des ondes a été étudiée par de nombreux auteurs. Une méthode de choix est d'utiliser la méthode des multiplicateurs (cf. Komornik (1994)). Récemment, dans Ramdani et al. (2005), une première preuve basée sur les séries de Fourier a été donnée dans le cas où le domaine est un carré grâce à un test de type Hautus. On donne ici une nouvelle preuve auto-contenue par une approche de type Ingham, dans le cas plus général où le domaine est un produit d'intervalles ; on obtient alors un temps et des constantes explicites, contrairement à la preuve de Ramdani et al. (2005). Cependant, on n'atteint pas le temps optimal, qui peut être obtenu pour ce problème par la méthode des multiplicateurs.
Accepted:
Published online:
Michel Mehrenberger 1
@article{CRMATH_2009__347_1-2_63_0, author = {Michel Mehrenberger}, title = {An {Ingham} type proof for the boundary observability of a $ N-d$ wave equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {63--68}, publisher = {Elsevier}, volume = {347}, number = {1-2}, year = {2009}, doi = {10.1016/j.crma.2008.11.002}, language = {en}, }
Michel Mehrenberger. An Ingham type proof for the boundary observability of a $ N-d$ wave equation. Comptes Rendus. Mathématique, Volume 347 (2009) no. 1-2, pp. 63-68. doi : 10.1016/j.crma.2008.11.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.11.002/
[1] Some trigonometrical inequalities with applications to the theory of series, Math. Z., Volume 41 (1936) no. 1, pp. 367-379
[2] On the exact internal controllability of a Petrowsky system, J. Math. Pures Appl. (9), Volume 71 (1992), pp. 331-342
[3] Exact Controllability and Stabilization – The Multiplier Method, John Wiley and Masson, Chichester and Paris, 1994
[4] Fourier Series in Control Theory, Springer, New York, 2005
[5] An Ingham type proof for a bigrid observability theorem, ESAIM COCV, Volume 14 (2008) no. 3, pp. 604-631
[6] Partial exact controllability for spherical membranes, SIAM J. Control Optim., Volume 35 (1997), pp. 641-653
[7] A spectral approach for the exact observability of infinite-dimensional systems with skew-adjoint generator, J. Funct. Anal., Volume 226 (2005) no. 1, pp. 193-229
Cited by Sources:
Comments - Policy