[Rang de surfaces elliptiques et changements de base]
On étudie les variations du rang des fibres dans une surface elliptique. On montre que si son modèle minimal est
We study the variations of the rank of fibers of an elliptic surface with minimal model over k isomorphic to
Accepté le :
Publié le :
Cecilia Salgado 1
@article{CRMATH_2009__347_3-4_129_0, author = {Cecilia Salgado}, title = {Rank of elliptic surfaces and base change}, journal = {Comptes Rendus. Math\'ematique}, pages = {129--132}, publisher = {Elsevier}, volume = {347}, number = {3-4}, year = {2009}, doi = {10.1016/j.crma.2008.12.003}, language = {en}, }
Cecilia Salgado. Rank of elliptic surfaces and base change. Comptes Rendus. Mathématique, Volume 347 (2009) no. 3-4, pp. 129-132. doi : 10.1016/j.crma.2008.12.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.12.003/
[1] Sur la répartition des points rationnels de surfaces elliptiques, J. Reine Angew. Math., Volume 505 (1998), pp. 45-71
[2] Autour d'une conjecture de Serge Lang, Inven. Math., Volume 94 (1988), pp. 575-603
[3] Diophantine Geometry, Interscience Tracts in Pure Appl. Math., vol. 11, John Wiley and Sons, 1962
[4] R. Miranda, The basic theory of elliptic surfaces, Dottorato di Ricerca in Matematica, ETS Editrice, Pisa, 1989
[5] Propriétés arithmétiques de certaines familles de courbes algébriques, Amsterdam, 1954 (Proc. Inter. Congress of Math.), Volume vol. III, North-Holland Publishing Co., Amsterdam (1956), pp. 481-488
[6] On the Mordell Weil lattices, Comment. Math. Univ. St. Pauli, Volume 39 (1990), pp. 211-240
[7] Advanced Topics in the Arithmetic of Elliptic Curves, Grad. Texts in Math., vol. 151, Springer-Verlag, 1999
[8] Heights and the specialization map for families of abelian varieties, J. Reine Angew. Math., Volume 342 (1983)
- Non-thin rank jumps for double elliptic
surfaces, Manuscripta Mathematica, Volume 175 (2024) no. 3-4, pp. 771-781 | DOI:10.1007/s00229-024-01554-2 | Zbl:1551.14147 - On the rank of the fibers of elliptic
surfaces, Bulletin of the Brazilian Mathematical Society. New Series, Volume 43 (2012) no. 1, pp. 7-16 | DOI:10.1007/s00574-012-0002-6 | Zbl:1307.14060 - Specializations of elliptic surfaces, and divisibility in the Mordell–Weil group, Algebra Number Theory, Volume 5 (2011) no. 4, p. 465 | DOI:10.2140/ant.2011.5.465
Cité par 3 documents. Sources : Crossref, zbMATH
☆ The work in this article had financial support provided by CAPES (Coordenaçao de Aperfeiçoamente de Pessoal de Nivel Superior).
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier