Comptes Rendus
Number Theory
Rank of elliptic surfaces and base change
[Rang de surfaces elliptiques et changements de base]
Comptes Rendus. Mathématique, Volume 347 (2009) no. 3-4, pp. 129-132.

On étudie les variations du rang des fibres dans une surface elliptique. On montre que si son modèle minimal est Pk2 alors il existe une infinité de fibres avec un rang égal au moins au rang générique augmenté de deux unités.

We study the variations of the rank of fibers of an elliptic surface with minimal model over k isomorphic to Pk2. We show that an infinite number of fibers have rank at least the generic rank plus two.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2008.12.003

Cecilia Salgado 1

1 Institut de mathématiques de Jussieu, 175, rue du Chevaleret 75013 Paris, France
@article{CRMATH_2009__347_3-4_129_0,
     author = {Cecilia Salgado},
     title = {Rank of elliptic surfaces and base change},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {129--132},
     publisher = {Elsevier},
     volume = {347},
     number = {3-4},
     year = {2009},
     doi = {10.1016/j.crma.2008.12.003},
     language = {en},
}
TY  - JOUR
AU  - Cecilia Salgado
TI  - Rank of elliptic surfaces and base change
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 129
EP  - 132
VL  - 347
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crma.2008.12.003
LA  - en
ID  - CRMATH_2009__347_3-4_129_0
ER  - 
%0 Journal Article
%A Cecilia Salgado
%T Rank of elliptic surfaces and base change
%J Comptes Rendus. Mathématique
%D 2009
%P 129-132
%V 347
%N 3-4
%I Elsevier
%R 10.1016/j.crma.2008.12.003
%G en
%F CRMATH_2009__347_3-4_129_0
Cecilia Salgado. Rank of elliptic surfaces and base change. Comptes Rendus. Mathématique, Volume 347 (2009) no. 3-4, pp. 129-132. doi : 10.1016/j.crma.2008.12.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.12.003/

[1] H. Billard Sur la répartition des points rationnels de surfaces elliptiques, J. Reine Angew. Math., Volume 505 (1998), pp. 45-71

[2] M. Hindry Autour d'une conjecture de Serge Lang, Inven. Math., Volume 94 (1988), pp. 575-603

[3] S. Lang Diophantine Geometry, Interscience Tracts in Pure Appl. Math., vol. 11, John Wiley and Sons, 1962

[4] R. Miranda, The basic theory of elliptic surfaces, Dottorato di Ricerca in Matematica, ETS Editrice, Pisa, 1989

[5] A. Néron Propriétés arithmétiques de certaines familles de courbes algébriques, Amsterdam, 1954 (Proc. Inter. Congress of Math.), Volume vol. III, North-Holland Publishing Co., Amsterdam (1956), pp. 481-488

[6] T. Shioda On the Mordell Weil lattices, Comment. Math. Univ. St. Pauli, Volume 39 (1990), pp. 211-240

[7] J. Silverman Advanced Topics in the Arithmetic of Elliptic Curves, Grad. Texts in Math., vol. 151, Springer-Verlag, 1999

[8] J. Silverman Heights and the specialization map for families of abelian varieties, J. Reine Angew. Math., Volume 342 (1983)

Cité par Sources :

The work in this article had financial support provided by CAPES (Coordenaçao de Aperfeiçoamente de Pessoal de Nivel Superior).

Commentaires - Politique