[Rang de surfaces elliptiques et changements de base]
We study the variations of the rank of fibers of an elliptic surface with minimal model over k isomorphic to
On étudie les variations du rang des fibres dans une surface elliptique. On montre que si son modèle minimal est
Accepté le :
Publié le :
Cecilia Salgado 1
@article{CRMATH_2009__347_3-4_129_0, author = {Cecilia Salgado}, title = {Rank of elliptic surfaces and base change}, journal = {Comptes Rendus. Math\'ematique}, pages = {129--132}, publisher = {Elsevier}, volume = {347}, number = {3-4}, year = {2009}, doi = {10.1016/j.crma.2008.12.003}, language = {en}, }
Cecilia Salgado. Rank of elliptic surfaces and base change. Comptes Rendus. Mathématique, Volume 347 (2009) no. 3-4, pp. 129-132. doi : 10.1016/j.crma.2008.12.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.12.003/
[1] Sur la répartition des points rationnels de surfaces elliptiques, J. Reine Angew. Math., Volume 505 (1998), pp. 45-71
[2] Autour d'une conjecture de Serge Lang, Inven. Math., Volume 94 (1988), pp. 575-603
[3] Diophantine Geometry, Interscience Tracts in Pure Appl. Math., vol. 11, John Wiley and Sons, 1962
[4] R. Miranda, The basic theory of elliptic surfaces, Dottorato di Ricerca in Matematica, ETS Editrice, Pisa, 1989
[5] Propriétés arithmétiques de certaines familles de courbes algébriques, Amsterdam, 1954 (Proc. Inter. Congress of Math.), Volume vol. III, North-Holland Publishing Co., Amsterdam (1956), pp. 481-488
[6] On the Mordell Weil lattices, Comment. Math. Univ. St. Pauli, Volume 39 (1990), pp. 211-240
[7] Advanced Topics in the Arithmetic of Elliptic Curves, Grad. Texts in Math., vol. 151, Springer-Verlag, 1999
[8] Heights and the specialization map for families of abelian varieties, J. Reine Angew. Math., Volume 342 (1983)
Cité par Sources :
☆ The work in this article had financial support provided by CAPES (Coordenaçao de Aperfeiçoamente de Pessoal de Nivel Superior).
Commentaires - Politique