Comptes Rendus
Optimal Control
Exact controllability of a 3D piezoelectric body
Comptes Rendus. Mathématique, Volume 347 (2009) no. 3-4, pp. 167-172.

In this Note we study the exact controllability of a three-dimensional body made of a material whose constitutive law introduces an elasticity-electricity coupling. We show that, without any geometrical assumption, two controls (the elastic and the electric controls) acting on the whole boundary drive the system to rest in finite time.

On considère un corps constitué d'un matériau dont la loi constitutive introduit un couplage élastique-électrique. On montre que, sans faire aucune hypothèse géométrique, l'application de deux contrôles agissant sur la totalité de la frontière (un contrôle élastique et un contrôle électrique) permet de contrôler le système en temps fini.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2008.12.007

Irena Lasiecka 1; Bernadette Miara 2

1 Department of Mathematics, P.O. Box 400137, University of Virginia, Charlottesville, VA 22904-4137, USA
2 Université Paris-Est, École supérieure d'ingénieurs en électrotechnique et électronique, département de modélisation et simulation numérique, 2, boulevard Blaise-Pascal, 93160 Noisy-le-Grand, France
@article{CRMATH_2009__347_3-4_167_0,
     author = {Irena Lasiecka and Bernadette Miara},
     title = {Exact controllability of a {3D} piezoelectric body},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {167--172},
     publisher = {Elsevier},
     volume = {347},
     number = {3-4},
     year = {2009},
     doi = {10.1016/j.crma.2008.12.007},
     language = {en},
}
TY  - JOUR
AU  - Irena Lasiecka
AU  - Bernadette Miara
TI  - Exact controllability of a 3D piezoelectric body
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 167
EP  - 172
VL  - 347
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crma.2008.12.007
LA  - en
ID  - CRMATH_2009__347_3-4_167_0
ER  - 
%0 Journal Article
%A Irena Lasiecka
%A Bernadette Miara
%T Exact controllability of a 3D piezoelectric body
%J Comptes Rendus. Mathématique
%D 2009
%P 167-172
%V 347
%N 3-4
%I Elsevier
%R 10.1016/j.crma.2008.12.007
%G en
%F CRMATH_2009__347_3-4_167_0
Irena Lasiecka; Bernadette Miara. Exact controllability of a 3D piezoelectric body. Comptes Rendus. Mathématique, Volume 347 (2009) no. 3-4, pp. 167-172. doi : 10.1016/j.crma.2008.12.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.12.007/

[1] A. Bensoussan; G. Da Prato; M.C. Delfour; S.K. Mitter Representation and Control of Infinite Dimensional Systems, Birkhäuser, 2006

[2] V. Isakov Inverse Problems and Partial Differential Equations, Springer, 2005

[3] I. Lasiecka Mathematical Control Theory of Coupled PDEs, SIAM, 2002 (NSF-CMBS Lecture Notes)

[4] I. Lasiecka; R. Triggiani Exact controllability of the wave equation with Neumann boundary control, Appl. Math. Optim., Volume 19 (1989), pp. 243-290

[5] I. Lasiecka; R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximations Theories, vols. I, II, Cambridge University Press, Cambridge, 2000

[6] J.-L. Lions Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1, Masson, 1988

[7] B. Miara Contrôlabilité d'un corps piézoélectrique, C. R. Acad. Sci. Paris, Ser. I, Volume 333 (2001), pp. 267-270

[8] B. Miara, Exact controllability of piezoelectric shells, in: Fourth Conference on Elliptic and Parabolic Problems, Gaeta, 2002, pp. 434–441

[9] B. Miara; A. Münch Exact controllability of a piezoelectric body. Theory and numerical simulation, Appl. Math. Optim. (2009)

[10] B. Miara, M.L. Santos, Stabilization of piezoelectric body, in preparation

[11] D. Russell Controllability and stabilizability theory for linear partial differential equations, SIAM Rev., Volume 28 (1978), pp. 639-739

Cited by Sources:

Comments - Policy