[Minimiseurs de la fonctionnelle de Kirchhoff : équations de Euler–Lagrange et régularité]
Soit
Let
Accepté le :
Publié le :
Peter Hornung 1
@article{CRMATH_2009__347_11-12_647_0, author = {Peter Hornung}, title = {Minimizers of {Kirchhoff's} plate functional: {Euler{\textendash}Lagrange} equations and regularity}, journal = {Comptes Rendus. Math\'ematique}, pages = {647--650}, publisher = {Elsevier}, volume = {347}, number = {11-12}, year = {2009}, doi = {10.1016/j.crma.2009.03.031}, language = {en}, }
Peter Hornung. Minimizers of Kirchhoff's plate functional: Euler–Lagrange equations and regularity. Comptes Rendus. Mathématique, Volume 347 (2009) no. 11-12, pp. 647-650. doi : 10.1016/j.crma.2009.03.031. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.03.031/
[1] Constrained Willmore surfaces, Calc. Var., Volume 32 (2008), pp. 263-277
[2] A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math., Volume 55 (2002), pp. 1461-1506
[3] P. Hornung, A density result for
[4] Approximating
[5] P. Hornung, Flat minimizers of the Willmore functional: Euler–Lagrange equations, Preprint, Universität Bonn, 2008
[6] P. Hornung, Regularity results for flat minimizers of the Willmore functional, Preprint, Universität Bonn, 2008
[7] B. Kirchheim, Geometry and Rigidity of Microstructures, Habilitation thesis, University of Leipzig, 2001
[8] Regularity properties of isometric immersions, Math. Z., Volume 251 (2005), pp. 313-331
[9] On the Sobolev space of isometric immersions, J. Differential Geom., Volume 66 (2004) no. 1, pp. 47-69
[10] The shape of a Möbius strip, Nature Materials, Volume 6 (2007), pp. 563-567
- Euler-Lagrange equation and regularity for flat minimizers of the Willmore functional, Communications on Pure and Applied Mathematics, Volume 64 (2011) no. 3, pp. 367-441 | DOI:10.1002/cpa.20342 | Zbl:1209.49061
- Triangular buckling patterns of twisted inextensible strips., Proceedings of the Royal Society of London. Series A. Mathematical, Physical and Engineering Sciences, Volume 467 (2011) no. 2125, pp. 285-303 | DOI:10.1098/rspa.2010.0200 | Zbl:1219.74017
- Euler-Lagrange equations for variational problems on space curves, Physical Review E, Volume 81 (2010) no. 6 | DOI:10.1103/physreve.81.066603
Cité par 3 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier