Comptes Rendus
Differential Geometry
Minimizers of Kirchhoff's plate functional: Euler–Lagrange equations and regularity
Comptes Rendus. Mathématique, Volume 347 (2009) no. 11-12, pp. 647-650.

Let SR2 be a bounded C-domain. In this Note we consider W2,2 isometric immersions u:SR3 which minimize Kirchhoff's plate functional under boundary conditions prescribing the values of u and of ∇u on parts of ∂S. We derive the Euler–Lagrange equations satisfied by u and we derive regularity results for u.

Soit SR2 un C-domaine borné. Dans cette Note on considère une immersion W2,2-isométrique u:SR3 qui minimise la fonctionnelle de Kirchhoff sous les conditions frontières imposant les valeurs de u et ∇u sur des partie de ∂S. On en déduit les équations de Euler–Lagrange satisfaites par u et un résultat de régularité pour u.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2009.03.031

Peter Hornung 1

1 Institut für Angewandte Mathematik, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany
@article{CRMATH_2009__347_11-12_647_0,
     author = {Peter Hornung},
     title = {Minimizers of {Kirchhoff's} plate functional: {Euler{\textendash}Lagrange} equations and regularity},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {647--650},
     publisher = {Elsevier},
     volume = {347},
     number = {11-12},
     year = {2009},
     doi = {10.1016/j.crma.2009.03.031},
     language = {en},
}
TY  - JOUR
AU  - Peter Hornung
TI  - Minimizers of Kirchhoff's plate functional: Euler–Lagrange equations and regularity
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 647
EP  - 650
VL  - 347
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crma.2009.03.031
LA  - en
ID  - CRMATH_2009__347_11-12_647_0
ER  - 
%0 Journal Article
%A Peter Hornung
%T Minimizers of Kirchhoff's plate functional: Euler–Lagrange equations and regularity
%J Comptes Rendus. Mathématique
%D 2009
%P 647-650
%V 347
%N 11-12
%I Elsevier
%R 10.1016/j.crma.2009.03.031
%G en
%F CRMATH_2009__347_11-12_647_0
Peter Hornung. Minimizers of Kirchhoff's plate functional: Euler–Lagrange equations and regularity. Comptes Rendus. Mathématique, Volume 347 (2009) no. 11-12, pp. 647-650. doi : 10.1016/j.crma.2009.03.031. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.03.031/

[1] C. Bohle; G.P. Peters; U. Pinkall Constrained Willmore surfaces, Calc. Var., Volume 32 (2008), pp. 263-277

[2] G. Friesecke; R. James; S. Müller A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math., Volume 55 (2002), pp. 1461-1506

[3] P. Hornung, A density result for W2,2 isometric immersions, MIS MPG Preprint, 2007

[4] P. Hornung Approximating W2,2 isometric immersions, C. R. Acad. Sci. Paris, Ser. I, Volume 346 (2008), pp. 189-192

[5] P. Hornung, Flat minimizers of the Willmore functional: Euler–Lagrange equations, Preprint, Universität Bonn, 2008

[6] P. Hornung, Regularity results for flat minimizers of the Willmore functional, Preprint, Universität Bonn, 2008

[7] B. Kirchheim, Geometry and Rigidity of Microstructures, Habilitation thesis, University of Leipzig, 2001

[8] S. Müller; M.R. Pakzad Regularity properties of isometric immersions, Math. Z., Volume 251 (2005), pp. 313-331

[9] M.R. Pakzad On the Sobolev space of isometric immersions, J. Differential Geom., Volume 66 (2004) no. 1, pp. 47-69

[10] E.L. Starostin; G.H.M. van der Heijden The shape of a Möbius strip, Nature Materials, Volume 6 (2007), pp. 563-567

Cited by Sources:

Comments - Policy