Comptes Rendus
Differential Geometry
Complete intersections with metrics of positive scalar curvature
[Intersections complètes admettant des métriques à courbure salaire positive]
Comptes Rendus. Mathématique, Volume 347 (2009) no. 13-14, pp. 797-800.

Nous donnons la liste des variétés complexes projectives intersections complètes, qui admettent une métrique riemannienne à courbure scalaire positive.

We give a complete list of complex projective complete intersections admitting Riemannian metrics of positive scalar curvature.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.03.033

Fuquan Fang 1 ; Peng Shao 2

1 Department of Mathematics, Capital Normal University, Beijing, PR China
2 Chern Institute of Mathematics, Nankai University, Weijin Road 94, Tianjin 300071, PR China
@article{CRMATH_2009__347_13-14_797_0,
     author = {Fuquan Fang and Peng Shao},
     title = {Complete intersections with metrics of positive scalar curvature},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {797--800},
     publisher = {Elsevier},
     volume = {347},
     number = {13-14},
     year = {2009},
     doi = {10.1016/j.crma.2009.03.033},
     language = {en},
}
TY  - JOUR
AU  - Fuquan Fang
AU  - Peng Shao
TI  - Complete intersections with metrics of positive scalar curvature
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 797
EP  - 800
VL  - 347
IS  - 13-14
PB  - Elsevier
DO  - 10.1016/j.crma.2009.03.033
LA  - en
ID  - CRMATH_2009__347_13-14_797_0
ER  - 
%0 Journal Article
%A Fuquan Fang
%A Peng Shao
%T Complete intersections with metrics of positive scalar curvature
%J Comptes Rendus. Mathématique
%D 2009
%P 797-800
%V 347
%N 13-14
%I Elsevier
%R 10.1016/j.crma.2009.03.033
%G en
%F CRMATH_2009__347_13-14_797_0
Fuquan Fang; Peng Shao. Complete intersections with metrics of positive scalar curvature. Comptes Rendus. Mathématique, Volume 347 (2009) no. 13-14, pp. 797-800. doi : 10.1016/j.crma.2009.03.033. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.03.033/

[1] W. Barth; C. Peters; A. Van de Ven Compact Complex Surfaces, Springer-Verlag, Berlin, 1984

[2] R. Brooks The Aˆ-genus of complex hypersurfaces and complete intersections, Proc. Amer. Math. Soc., Volume 87 (1983), pp. 528-532

[3] H. Feng; B. Zhang Existence of Riemannian metrics with positive scalar curvature of complex complete intersections, Adv. Math. (China), Volume 36 (2007), pp. 47-50

[4] M. Gromov; B. Lawson Spin and scalar curvature in the presence of a fundamental group. I, Ann. Math., Volume 111 (1980), pp. 209-230

[5] M. Gromov; B. Lawson The classification of simply connected manifolds of positive scalar curvature, Ann. Math., Volume 111 (1980), pp. 423-434

[6] M. Gromov; B. Lawson Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Inst. Hautes Études Sci. Publ. Math., Volume 58 (1983), pp. 83-196

[7] Y. Miyaoka On the Chern numbers of surfaces of general type, Invent. Math., Volume 42 (1977), pp. 225-237

[8] J. Morgan The Seiberg–Witten Equations and Applications to the Topology of Smooth Four-Manifolds, Princeton Press, 1996

[9] R. Schoen; S.T. Yau The structure of manifolds with positive scalar curvature, Manuscripta Math., Volume 28 (1979), pp. 159-183

[10] S. Stolz Simply connected manifolds of positive scalar curvature, Ann. Math., Volume 136 (1992), pp. 511-540

[11] C. Taubes The Seiberg–Witten invariants and symplectic forms, Math. Res. Lett., Volume 1 (1994) no. 6, pp. 809-822

[12] W. Zhang Spinc-manifolds and Rokhlin congruences, C. R. Acad. Sci. Paris, Sér. I Math., Volume 317 (1993), pp. 689-692

[13] W. Zhang Existence of Riemannian metrics with positive scalar curvature on complex hypersurfaces, Acta Math. Sinica (Chin. Ser.), Volume 39 (1996) no. 4, pp. 460-462

Cité par Sources :

Supported by NSF Grant of China #10671097 and the Capital Normal University.

Commentaires - Politique