We give a complete list of complex projective complete intersections admitting Riemannian metrics of positive scalar curvature.
Nous donnons la liste des variétés complexes projectives intersections complètes, qui admettent une métrique riemannienne à courbure scalaire positive.
Accepted:
Published online:
Fuquan Fang 1; Peng Shao 2
@article{CRMATH_2009__347_13-14_797_0,
author = {Fuquan Fang and Peng Shao},
title = {Complete intersections with metrics of positive scalar curvature},
journal = {Comptes Rendus. Math\'ematique},
pages = {797--800},
year = {2009},
publisher = {Elsevier},
volume = {347},
number = {13-14},
doi = {10.1016/j.crma.2009.03.033},
language = {en},
}
Fuquan Fang; Peng Shao. Complete intersections with metrics of positive scalar curvature. Comptes Rendus. Mathématique, Volume 347 (2009) no. 13-14, pp. 797-800. doi: 10.1016/j.crma.2009.03.033
[1] Compact Complex Surfaces, Springer-Verlag, Berlin, 1984
[2] The -genus of complex hypersurfaces and complete intersections, Proc. Amer. Math. Soc., Volume 87 (1983), pp. 528-532
[3] Existence of Riemannian metrics with positive scalar curvature of complex complete intersections, Adv. Math. (China), Volume 36 (2007), pp. 47-50
[4] Spin and scalar curvature in the presence of a fundamental group. I, Ann. Math., Volume 111 (1980), pp. 209-230
[5] The classification of simply connected manifolds of positive scalar curvature, Ann. Math., Volume 111 (1980), pp. 423-434
[6] Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Inst. Hautes Études Sci. Publ. Math., Volume 58 (1983), pp. 83-196
[7] On the Chern numbers of surfaces of general type, Invent. Math., Volume 42 (1977), pp. 225-237
[8] The Seiberg–Witten Equations and Applications to the Topology of Smooth Four-Manifolds, Princeton Press, 1996
[9] The structure of manifolds with positive scalar curvature, Manuscripta Math., Volume 28 (1979), pp. 159-183
[10] Simply connected manifolds of positive scalar curvature, Ann. Math., Volume 136 (1992), pp. 511-540
[11] The Seiberg–Witten invariants and symplectic forms, Math. Res. Lett., Volume 1 (1994) no. 6, pp. 809-822
[12] Spinc-manifolds and Rokhlin congruences, C. R. Acad. Sci. Paris, Sér. I Math., Volume 317 (1993), pp. 689-692
[13] Existence of Riemannian metrics with positive scalar curvature on complex hypersurfaces, Acta Math. Sinica (Chin. Ser.), Volume 39 (1996) no. 4, pp. 460-462
Cited by Sources:
☆ Supported by NSF Grant of China #10671097 and the Capital Normal University.
Comments - Policy
