Let be the Heisenberg group of dimension . We give a precise description of all , where π is a multiplicative Poisson tensor on and is a left invariant metric on such that satisfies the necessary conditions, introduced by Eli Hawkins, to the existence of a noncommutative deformation of the spectral triple associated to .
Soit le groupe de Heisenberg de dimension . Nous donnons une description complète des couples où π est un tenseur de Poisson multiplicatif et une métrique invariante à gauche sur tels que vérifie les conditions nécessaires, introduites par Eli Hawkins, à l'existence d'une déformation non commutative du triple spectral associé à .
Accepted:
Published online:
Amine Bahayou 1; Mohamed Boucetta 2
@article{CRMATH_2009__347_13-14_791_0, author = {Amine Bahayou and Mohamed Boucetta}, title = {Multiplicative noncommutative deformations of left invariant {Riemannian} metrics on {Heisenberg} groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {791--796}, publisher = {Elsevier}, volume = {347}, number = {13-14}, year = {2009}, doi = {10.1016/j.crma.2009.04.013}, language = {en}, }
TY - JOUR AU - Amine Bahayou AU - Mohamed Boucetta TI - Multiplicative noncommutative deformations of left invariant Riemannian metrics on Heisenberg groups JO - Comptes Rendus. Mathématique PY - 2009 SP - 791 EP - 796 VL - 347 IS - 13-14 PB - Elsevier DO - 10.1016/j.crma.2009.04.013 LA - en ID - CRMATH_2009__347_13-14_791_0 ER -
%0 Journal Article %A Amine Bahayou %A Mohamed Boucetta %T Multiplicative noncommutative deformations of left invariant Riemannian metrics on Heisenberg groups %J Comptes Rendus. Mathématique %D 2009 %P 791-796 %V 347 %N 13-14 %I Elsevier %R 10.1016/j.crma.2009.04.013 %G en %F CRMATH_2009__347_13-14_791_0
Amine Bahayou; Mohamed Boucetta. Multiplicative noncommutative deformations of left invariant Riemannian metrics on Heisenberg groups. Comptes Rendus. Mathématique, Volume 347 (2009) no. 13-14, pp. 791-796. doi : 10.1016/j.crma.2009.04.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.04.013/
[1] Compatibilité des structures pseudo-riemanniennes et des structures de Poisson, C. R. Acad. Sci. Paris, Ser. I, Volume 333 (2001), pp. 763-768
[2] Poisson Structures and Their Normal Forms, Progress in Mathematics, vol. 242, Birkhäuser Verlag, Basel, Boston, New York, 2005
[3] Connections in Poisson geometry. I. Holonomy and invariants, J. Differential Geom., Volume 54 (2000) no. 2, pp. 303-365
[4] Noncommutative rigidity, Commun. Math. Phys., Volume 246 (2004), pp. 211-235
[5] The structure of noncommutative deformations, J. Differential Geom., Volume 77 (2007), pp. 385-424
[6] Crochet de Schouten–Nijenhuis et Cohomologie, Astérisque, Num´ero Hors Série (1985), pp. 257-271
[7] Curvature of Left invariant metrics on Lie groups, Adv. Math., Volume 21 (1976), pp. 293-329
[8] Quantum deformations of the Heisenberg group obtained by geometric quantization, J. Geom. Phys., Volume 7 (1990), pp. 553-569
Cited by Sources:
Comments - Policy