Comptes Rendus
Differential Geometry/Mathematical Physics
Uniform bound and a non-existence result for Lichnerowicz equation in the whole n-space
[Une estimation uniforme et un résultat de non-existence pour l'équation de Lichnerowicz sur n-espace]
Comptes Rendus. Mathématique, Volume 347 (2009) no. 13-14, pp. 805-808.

Dans cette Note, nous donnons une estimation uniforme et un résultat de non-existence pour les solutions positives de l'équation de Lichnerowicz sur Rn. En particulier, nous montrons que les solutions positives régulières de :

Δu+f(u)=0,u>0,dansRn
f(u)=up1up1,
sont bornées.

In this Note, we give a uniform bound and a non-existence result for positive solutions to the Lichnerowicz equation in Rn. In particular, we show that positive smooth solutions to:

Δu+f(u)=0,u>0,inRn
where
f(u)=up1up1,
are uniformly bounded.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.04.017

Li Ma 1 ; Xingwang Xu 2

1 Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
2 Mathematics Department, The National University of Singapore, 10, Kent Ridge Crescent, Singapore 119260
@article{CRMATH_2009__347_13-14_805_0,
     author = {Li Ma and Xingwang Xu},
     title = {Uniform bound and a non-existence result for {Lichnerowicz} equation in the whole \protect\emph{n}-space},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {805--808},
     publisher = {Elsevier},
     volume = {347},
     number = {13-14},
     year = {2009},
     doi = {10.1016/j.crma.2009.04.017},
     language = {en},
}
TY  - JOUR
AU  - Li Ma
AU  - Xingwang Xu
TI  - Uniform bound and a non-existence result for Lichnerowicz equation in the whole n-space
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 805
EP  - 808
VL  - 347
IS  - 13-14
PB  - Elsevier
DO  - 10.1016/j.crma.2009.04.017
LA  - en
ID  - CRMATH_2009__347_13-14_805_0
ER  - 
%0 Journal Article
%A Li Ma
%A Xingwang Xu
%T Uniform bound and a non-existence result for Lichnerowicz equation in the whole n-space
%J Comptes Rendus. Mathématique
%D 2009
%P 805-808
%V 347
%N 13-14
%I Elsevier
%R 10.1016/j.crma.2009.04.017
%G en
%F CRMATH_2009__347_13-14_805_0
Li Ma; Xingwang Xu. Uniform bound and a non-existence result for Lichnerowicz equation in the whole n-space. Comptes Rendus. Mathématique, Volume 347 (2009) no. 13-14, pp. 805-808. doi : 10.1016/j.crma.2009.04.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.04.017/

[1] Th. Aubin Some Nonlinear Problems in Riemannian Geometry, Springer, New York, 1998

[2] Y. Choquet-Bruhat; J. Isenberg; D. Pollack The Einstein-scalar field constraints on asymptotically Euclidean manifolds, Chinese Ann. Math. Ser. B, Volume 27 (2006) no. 1, pp. 31-52

[3] Y. Choquet-Bruhat; J. Isenberg; D. Pollack The constraint equations for the Einstein-scalar field system on compact manifolds, Class. Quantum Grav., Volume 24 (2007), pp. 809-828

[4] O. Druet, E. Hebey, Stability and instability for Einstein-scalar field Lichnerowicz equations on a compact Riemannian manifolds, 2008, preprint

[5] Y. Du; L. Ma Logistic type equations on RN by a squeezing method involving boundary blow-up solutions, J. London Math. Soc., Volume 64 (2001), pp. 107-124 (MR 2002d:35089)

[6] E. Hebey; F. Pacard; D. Pollack A variational analysis of Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds, Comm. Math. Phys., Volume 278 (2008) no. 1, pp. 117-132

[7] J. Lee; Th. Parker The Yamabe problem, Bull. Am. Soc., Volume 17 (1987) no. 1, pp. 37-91

[8] R. Schoen, A report on some recent progress on nonlinear problems in differential geometry, Surveys in Differential Geometry, 1991, pp. 201–241

  • Thi Quynh Nguyen; Trong Quyet Dao; Anh Tuan Duong Kato's inequality for m-Laplace operator on locally finite graphs and applications, Evolution Equations and Control Theory, Volume 14 (2025) no. 4, pp. 701-709 | DOI:10.3934/eect.2025002 | Zbl:8017652
  • Anh Tuan Duong; Setsuro Fujiié Some qualitative properties of Lichnerowicz equations and Ginzburg-Landau systems on locally finite graphs, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 362 (2024), pp. 1413-1423 | DOI:10.5802/crmath.653 | Zbl:1552.35242
  • Anh Tuan Duong; Thi Quynh Nguyen A note on positive solutions of Lichnerowicz equations involving the Δλ-Laplacian, Topological Methods in Nonlinear Analysis, Volume 62 (2023) no. 2, pp. 591-600 | DOI:10.12775/tmna.2022.076 | Zbl:1532.35023
  • Wei Dai; Jingze Fu On properties of positive solutions to nonlinear tri-harmonic and bi-harmonic equations with negative exponents, Bulletin of Mathematical Sciences, Volume 12 (2022) no. 3, p. 48 (Id/No 2250007) | DOI:10.1142/s1664360722500072 | Zbl:1505.35128
  • Anh Tuan Duong; Van Hoang Nguyen; Thi Quynh Nguyen Uniform lower bound and Liouville type theorem for fractional Lichnerowicz equations, Bulletin of the Australian Mathematical Society, Volume 104 (2021) no. 3, pp. 484-492 | DOI:10.1017/s0004972721000228 | Zbl:1479.35918
  • Nanbo Chen; Xiaochun Liu On the p-Laplacian Lichnerowicz equation on compact Riemannian manifolds, Science China. Mathematics, Volume 64 (2021) no. 10, pp. 2249-2274 | DOI:10.1007/s11425-020-1679-5 | Zbl:1482.58009
  • Liang Zhao; Ming Shen Gradient estimates for p-Laplacian Lichnerowicz equation on noncompact metric measure space, Chinese Annals of Mathematics. Series B, Volume 41 (2020) no. 3, pp. 397-406 | DOI:10.1007/s11401-020-0206-9 | Zbl:1442.58015
  • Miaomiao Cai; Fengquan Li Properties of positive solutions to nonlocal problems with negative exponents in unbounded domains, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 200 (2020), p. 13 (Id/No 112086) | DOI:10.1016/j.na.2020.112086 | Zbl:1448.35542
  • Miaomiao Cai; Li Ma Moving planes for nonlinear fractional Laplacian equation with negative powers, Discrete and Continuous Dynamical Systems, Volume 38 (2018) no. 9, pp. 4603-4615 | DOI:10.3934/dcds.2018201 | Zbl:1397.35330
  • Liang Zhao; Dengyun Yang Gradient estimates for the p-Laplacian Lichnerowicz equation on smooth metric measure spaces, Proceedings of the American Mathematical Society, Volume 146 (2018) no. 12, pp. 5451-5461 | DOI:10.1090/proc/13997 | Zbl:1401.58008
  • Liang Zhao; Linfeng Wang Liouville theorem for p-Laplacian Lichnerowicz equation on compact manifolds, Journal of Geometry and Physics, Volume 121 (2017), pp. 8-14 | DOI:10.1016/j.geomphys.2017.07.004 | Zbl:1376.58006
  • Li Ma Boundedness of solutions to Ginzburg-Landau fractional Laplacian equation, International Journal of Mathematics, Volume 27 (2016) no. 5, p. 6 (Id/No 1650048) | DOI:10.1142/s0129167x16500488 | Zbl:1338.35473
  • Li Ma; Juncheng Wei Stability and multiple solutions to Einstein-scalar field Lichnerowicz equation on manifolds, Journal de Mathématiques Pures et Appliquées, Volume 99 (2013) no. 2, p. 174 | DOI:10.1016/j.matpur.2012.06.009
  • Li Ma; Xiangyang Wang Kato's inequality and Liouville theorems on locally finite graphs, Science China. Mathematics, Volume 56 (2013) no. 4, pp. 771-776 | DOI:10.1007/s11425-013-4577-1 | Zbl:1272.31013
  • Quc Anh Ngô; Xingwang Xu Existence results for the Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds, Advances in Mathematics, Volume 230 (2012) no. 4-6, pp. 2378-2415 | DOI:10.1016/j.aim.2012.04.007 | Zbl:1256.58009
  • Li Ma; Yuhua Sun; Xiao Tang Heat flow method for Lichnerowicz type equations on closed manifolds, ZAMP. Zeitschrift für angewandte Mathematik und Physik, Volume 63 (2012) no. 2, pp. 261-270 | DOI:10.1007/s00033-011-0156-x | Zbl:1239.58017
  • Li Ma Liouville Type Theorems for Lichnerowicz Equations and Ginzburg-Landau Equation: Survey, Advances in Pure Mathematics, Volume 01 (2011) no. 03, p. 99 | DOI:10.4236/apm.2011.13022
  • Haïm Brezis Comments on two notes by L. Ma and X. Xu, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 349 (2011) no. 5-6, pp. 269-271 | DOI:10.1016/j.crma.2011.01.024 | Zbl:1223.35159
  • Li Ma Liouville type theorem and uniform bound for the Lichnerowicz equation and the Ginzburg-Landau equation, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 348 (2010) no. 17-18, pp. 993-996 | DOI:10.1016/j.crma.2010.07.031 | Zbl:1201.35063

Cité par 19 documents. Sources : Crossref, zbMATH

The research is partially supported by the National Natural Science Foundation of China 10631020 and SRFDP 20060003002.

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: