[Théorèmes ergodiques ponctuels avec vitesse optimale]
Soit T un opérateur de Dunford–Schwartz sur l'espace de probabilité
Let T be a Dunford–Schwartz operator on the probability space
Accepté le :
Publié le :
Christophe Cuny 1
@article{CRMATH_2009__347_15-16_953_0, author = {Christophe Cuny}, title = {Some optimal pointwise ergodic theorems with rate}, journal = {Comptes Rendus. Math\'ematique}, pages = {953--958}, publisher = {Elsevier}, volume = {347}, number = {15-16}, year = {2009}, doi = {10.1016/j.crma.2009.04.034}, language = {en}, }
Christophe Cuny. Some optimal pointwise ergodic theorems with rate. Comptes Rendus. Mathématique, Volume 347 (2009) no. 15-16, pp. 953-958. doi : 10.1016/j.crma.2009.04.034. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.04.034/
[1] Extensions of the Menchoff–Rademacher theorem with applications to ergodic theory, Israel J. Math., Volume 148 (2005), pp. 41-86
[2] C. Cuny, On the a.s. convergence of the one-sided ergodic Hilbert transform, Ergodic Theory Dynam. Systems, in press
[3] C. Cuny, Pointwise ergodic theorems with rate and application to limit theorems for stationary processes, preprint
[4] On the a.s. Cesaro-α convergence for stationary or orthogonal random variables, J. Theoret. Probab., Volume 2 (1989) no. 4, pp. 475-485
[5] Fractional Poisson equations and ergodic theorems for fractional coboundaries, Israel J. Math., Volume 123 (2001), pp. 93-130
[6] The dependence of the rate of convergence in the strong law of large numbers for stationary processes on the rate of diminution of the correlation function, Teor. Veroyatnost. i Primenen., Volume 26 (1981) no. 4, pp. 720-733
[7] Ergodic Theorems, de Gruyter Studies in Mathematics, vol. 6, Walter de Gruyter & Co., Berlin, 1985
[8] Ergodic Theory, Cambridge Studies in Advanced Mathematics, vol. 2, Cambridge University Press, Cambridge, 1983
[9] Uniform bounds under increment conditions, Trans. Amer. Math. Soc., Volume 358 (2006) no. 2, pp. 911-936
[10] Law of the iterated logarithm for stationary processes, Ann. Probab., Volume 36 (2008), pp. 127-142
[11] Trigonometric Series, Cambridge University Press, 1968
- Measuring the rate of convergence in the Birkhoff ergodic theorem, Mathematical Notes, Volume 106 (2019) no. 1, pp. 52-62 | DOI:10.1134/s0001434619070058 | Zbl:1427.37004
- Об измерении скоростей сходимости в эргодической теореме Биркгофа, Математические заметки, Volume 106 (2019) no. 1, p. 40 | DOI:10.4213/mzm11817
- Limit theorems for Markov chains by the symmetrization method, Journal of Mathematical Analysis and Applications, Volume 434 (2016) no. 1, pp. 52-83 | DOI:10.1016/j.jmaa.2015.07.061 | Zbl:1334.60035
- Quenched central limit theorems for sums of stationary processes, Statistics Probability Letters, Volume 85 (2014), pp. 161-167 | DOI:10.1016/j.spl.2013.09.033 | Zbl:1290.60027
- Central limit theorem started at a point for stationary processes and additive functionals of reversible Markov chains, Journal of Theoretical Probability, Volume 25 (2012) no. 1, pp. 171-188 | DOI:10.1007/s10959-010-0321-8 | Zbl:1247.60031
- Almost sure invariance principles via martingale approximation, Stochastic Processes and their Applications, Volume 122 (2012) no. 1, pp. 170-190 | DOI:10.1016/j.spa.2011.09.004 | Zbl:1230.60029
- Pointwise ergodic theorems with rate with applications to limit theorems for stationary processes, Stochastics and Dynamics, Volume 11 (2011) no. 1, pp. 135-155 | DOI:10.1142/s0219493711003206 | Zbl:1210.60031
- Martingale approximation and optimality of some conditions for the central limit theorem, Journal of Theoretical Probability, Volume 23 (2010) no. 3, pp. 888-903 | DOI:10.1007/s10959-010-0275-x | Zbl:1205.60075
Cité par 8 documents. Sources : Crossref, zbMATH
☆ Research partially carried out at Ben-Gurion University, supported by its Center for Advanced Studies in Mathematics.
Commentaires - Politique