We prove that every minimal equivalence relation on a Cantor set arising from the continuous hull of an aperiodic and repetitive Euclidean tiling is affable.
Nous prouvons que toute relation d'équivalence définie sur l'ensemble de Cantor par l'enveloppe d'un pavage euclidien apériodique et répétitif est affable.
Accepted:
Published online:
Fernando Alcalde Cuesta 1; Pablo González Sequeiros 1; Álvaro Lozano Rojo 2
@article{CRMATH_2009__347_15-16_947_0, author = {Fernando Alcalde Cuesta and Pablo Gonz\'alez Sequeiros and \'Alvaro Lozano Rojo}, title = {Affability of {Euclidean} tilings}, journal = {Comptes Rendus. Math\'ematique}, pages = {947--952}, publisher = {Elsevier}, volume = {347}, number = {15-16}, year = {2009}, doi = {10.1016/j.crma.2009.06.011}, language = {en}, }
TY - JOUR AU - Fernando Alcalde Cuesta AU - Pablo González Sequeiros AU - Álvaro Lozano Rojo TI - Affability of Euclidean tilings JO - Comptes Rendus. Mathématique PY - 2009 SP - 947 EP - 952 VL - 347 IS - 15-16 PB - Elsevier DO - 10.1016/j.crma.2009.06.011 LA - en ID - CRMATH_2009__347_15-16_947_0 ER -
Fernando Alcalde Cuesta; Pablo González Sequeiros; Álvaro Lozano Rojo. Affability of Euclidean tilings. Comptes Rendus. Mathématique, Volume 347 (2009) no. 15-16, pp. 947-952. doi : 10.1016/j.crma.2009.06.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.06.011/
[1] Dynamique transverse de la lamination de Ghys–Kenyon, Astérisque, Volume 323 (2009)
[2] Spaces of tilings, finite telescopic approximations and gap-labelling, Comm. Math. Phys., Volume 261 (2006), pp. 1-41
[3] Laminations par surfaces de Riemann, Panor. Syntheses, Volume 8 (1999), pp. 49-95
[4] Affable equivalence relations and orbit structure of Cantor minimal systems, Ergodic Theory Dynam. Systems, Volume 24 (2004), pp. 441-475
[5] Orbit equivalence for Cantor minimal -systems, J. Amer. Math. Soc., Volume 21 (2008), pp. 863-892
[6] The absorption theorem for affable equivalence relations, Ergodic Theory Dynam. Systems, Volume 28 (2008), pp. 1509-1531
[7] Orbit equivalence for Cantor minimal -systems | arXiv
[8] Tilings and Patterns, W.H. Freeman & Co., New York, 1987
[9] Á. Lozano Rojo, Dinámica transversa de laminaciones definidas por grafos repetitivos, UPV-EHU Ph.D. thesis, 2008
[10] Affability of equivalence relations arising from two-dimensional substitution tilings, Ergodic Theory Dynam. Systems, Volume 26 (2006), pp. 467-480
[11] Ergodics sets, Bull. Amer. Math. Soc., Volume 58 (1952), pp. 116-136
[12] On invariant measures of finite affine type tilings, Ergodic Theory Dynam. Systems, Volume 26 (2006), pp. 1159-1176
[13] Undecidability and nonperiodicity of tilings of the plane, Invent. Math., Volume 12 (1971), pp. 177-209
[14] Foliations of polynomial growth are hyperfinite, Israel J. Math., Volume 34 (1979), pp. 245-258
Cited by Sources:
☆ This work was supported by the Spanish Ministry of Education and Science (Research Projects MTM2004-08214 and MTM2007-66262), the University of the Basque Country (R. Project EHU 06/05), and the Spanish Network of Topology.
Comments - Policy