[Affabilité des pavages euclidiens]
Nous prouvons que toute relation d'équivalence définie sur l'ensemble de Cantor par l'enveloppe d'un pavage euclidien apériodique et répétitif est affable.
We prove that every minimal equivalence relation on a Cantor set arising from the continuous hull of an aperiodic and repetitive Euclidean tiling is affable.
Accepté le :
Publié le :
Fernando Alcalde Cuesta 1 ; Pablo González Sequeiros 1 ; Álvaro Lozano Rojo 2
@article{CRMATH_2009__347_15-16_947_0, author = {Fernando Alcalde Cuesta and Pablo Gonz\'alez Sequeiros and \'Alvaro Lozano Rojo}, title = {Affability of {Euclidean} tilings}, journal = {Comptes Rendus. Math\'ematique}, pages = {947--952}, publisher = {Elsevier}, volume = {347}, number = {15-16}, year = {2009}, doi = {10.1016/j.crma.2009.06.011}, language = {en}, }
TY - JOUR AU - Fernando Alcalde Cuesta AU - Pablo González Sequeiros AU - Álvaro Lozano Rojo TI - Affability of Euclidean tilings JO - Comptes Rendus. Mathématique PY - 2009 SP - 947 EP - 952 VL - 347 IS - 15-16 PB - Elsevier DO - 10.1016/j.crma.2009.06.011 LA - en ID - CRMATH_2009__347_15-16_947_0 ER -
Fernando Alcalde Cuesta; Pablo González Sequeiros; Álvaro Lozano Rojo. Affability of Euclidean tilings. Comptes Rendus. Mathématique, Volume 347 (2009) no. 15-16, pp. 947-952. doi : 10.1016/j.crma.2009.06.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.06.011/
[1] Dynamique transverse de la lamination de Ghys–Kenyon, Astérisque, Volume 323 (2009)
[2] Spaces of tilings, finite telescopic approximations and gap-labelling, Comm. Math. Phys., Volume 261 (2006), pp. 1-41
[3] Laminations par surfaces de Riemann, Panor. Syntheses, Volume 8 (1999), pp. 49-95
[4] Affable equivalence relations and orbit structure of Cantor minimal systems, Ergodic Theory Dynam. Systems, Volume 24 (2004), pp. 441-475
[5] Orbit equivalence for Cantor minimal
[6] The absorption theorem for affable equivalence relations, Ergodic Theory Dynam. Systems, Volume 28 (2008), pp. 1509-1531
[7] Orbit equivalence for Cantor minimal
[8] Tilings and Patterns, W.H. Freeman & Co., New York, 1987
[9] Á. Lozano Rojo, Dinámica transversa de laminaciones definidas por grafos repetitivos, UPV-EHU Ph.D. thesis, 2008
[10] Affability of equivalence relations arising from two-dimensional substitution tilings, Ergodic Theory Dynam. Systems, Volume 26 (2006), pp. 467-480
[11] Ergodics sets, Bull. Amer. Math. Soc., Volume 58 (1952), pp. 116-136
[12] On invariant measures of finite affine type tilings, Ergodic Theory Dynam. Systems, Volume 26 (2006), pp. 1159-1176
[13] Undecidability and nonperiodicity of tilings of the plane, Invent. Math., Volume 12 (1971), pp. 177-209
[14] Foliations of polynomial growth are hyperfinite, Israel J. Math., Volume 34 (1979), pp. 245-258
Cité par Sources :
☆ This work was supported by the Spanish Ministry of Education and Science (Research Projects MTM2004-08214 and MTM2007-66262), the University of the Basque Country (R. Project EHU 06/05), and the Spanish Network of Topology.
Commentaires - Politique