Comptes Rendus
Dynamical Systems
Affability of Euclidean tilings
Comptes Rendus. Mathématique, Volume 347 (2009) no. 15-16, pp. 947-952.

We prove that every minimal equivalence relation on a Cantor set arising from the continuous hull of an aperiodic and repetitive Euclidean tiling is affable.

Nous prouvons que toute relation d'équivalence définie sur l'ensemble de Cantor par l'enveloppe d'un pavage euclidien apériodique et répétitif est affable.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2009.06.011

Fernando Alcalde Cuesta 1; Pablo González Sequeiros 1; Álvaro Lozano Rojo 2

1 Dpto. Xeometría e Topoloxía, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
2 Dpto. Matemáticas, Universidad del País Vasco-Euskal Herriko Unibertsitatea, 48940 Leioa, Spain
@article{CRMATH_2009__347_15-16_947_0,
     author = {Fernando Alcalde Cuesta and Pablo Gonz\'alez Sequeiros and \'Alvaro Lozano Rojo},
     title = {Affability of {Euclidean} tilings},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {947--952},
     publisher = {Elsevier},
     volume = {347},
     number = {15-16},
     year = {2009},
     doi = {10.1016/j.crma.2009.06.011},
     language = {en},
}
TY  - JOUR
AU  - Fernando Alcalde Cuesta
AU  - Pablo González Sequeiros
AU  - Álvaro Lozano Rojo
TI  - Affability of Euclidean tilings
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 947
EP  - 952
VL  - 347
IS  - 15-16
PB  - Elsevier
DO  - 10.1016/j.crma.2009.06.011
LA  - en
ID  - CRMATH_2009__347_15-16_947_0
ER  - 
%0 Journal Article
%A Fernando Alcalde Cuesta
%A Pablo González Sequeiros
%A Álvaro Lozano Rojo
%T Affability of Euclidean tilings
%J Comptes Rendus. Mathématique
%D 2009
%P 947-952
%V 347
%N 15-16
%I Elsevier
%R 10.1016/j.crma.2009.06.011
%G en
%F CRMATH_2009__347_15-16_947_0
Fernando Alcalde Cuesta; Pablo González Sequeiros; Álvaro Lozano Rojo. Affability of Euclidean tilings. Comptes Rendus. Mathématique, Volume 347 (2009) no. 15-16, pp. 947-952. doi : 10.1016/j.crma.2009.06.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.06.011/

[1] F. Alcalde Cuesta; Á. Lozano Rojo; M. Macho Stadler Dynamique transverse de la lamination de Ghys–Kenyon, Astérisque, Volume 323 (2009)

[2] J. Bellissard; R. Benedetti; J.M. Gambaudo Spaces of tilings, finite telescopic approximations and gap-labelling, Comm. Math. Phys., Volume 261 (2006), pp. 1-41

[3] E. Ghys Laminations par surfaces de Riemann, Panor. Syntheses, Volume 8 (1999), pp. 49-95

[4] T. Giordano; I. Putnam; C. Skau Affable equivalence relations and orbit structure of Cantor minimal systems, Ergodic Theory Dynam. Systems, Volume 24 (2004), pp. 441-475

[5] T. Giordano; H. Matui; I. Putnam; C. Skau Orbit equivalence for Cantor minimal Z2-systems, J. Amer. Math. Soc., Volume 21 (2008), pp. 863-892

[6] T. Giordano; H. Matui; I. Putnam; C. Skau The absorption theorem for affable equivalence relations, Ergodic Theory Dynam. Systems, Volume 28 (2008), pp. 1509-1531

[7] T. Giordano; H. Matui; I. Putnam; C. Skau Orbit equivalence for Cantor minimal Zd-systems | arXiv

[8] B. Grünbaum; G.C. Shephard Tilings and Patterns, W.H. Freeman & Co., New York, 1987

[9] Á. Lozano Rojo, Dinámica transversa de laminaciones definidas por grafos repetitivos, UPV-EHU Ph.D. thesis, 2008

[10] H. Matui Affability of equivalence relations arising from two-dimensional substitution tilings, Ergodic Theory Dynam. Systems, Volume 26 (2006), pp. 467-480

[11] J.C. Oxtoby Ergodics sets, Bull. Amer. Math. Soc., Volume 58 (1952), pp. 116-136

[12] S. Petite On invariant measures of finite affine type tilings, Ergodic Theory Dynam. Systems, Volume 26 (2006), pp. 1159-1176

[13] R.M. Robinson Undecidability and nonperiodicity of tilings of the plane, Invent. Math., Volume 12 (1971), pp. 177-209

[14] C. Series Foliations of polynomial growth are hyperfinite, Israel J. Math., Volume 34 (1979), pp. 245-258

Cited by Sources:

This work was supported by the Spanish Ministry of Education and Science (Research Projects MTM2004-08214 and MTM2007-66262), the University of the Basque Country (R. Project EHU 06/05), and the Spanish Network of Topology.

Comments - Policy