Comptes Rendus
Partial Differential Equations/Optimal Control
A general method for proving sharp energy decay rates for memory-dissipative evolution equations
Comptes Rendus. Mathématique, Volume 347 (2009) no. 15-16, pp. 867-872.

This Note is concerned with stabilization of hyperbolic systems by a distributed memory feedback. We present here a general method which gives energy decay rates in terms of the asymptotic behavior of the kernel at infinity. This method, which allows us to recover in a natural way the known cases (exponential, polynomial, …), applies to a large quasi-optimal class of kernels. It also provides sharp energy decay rates compared to the ones that are available in the literature. We give a general condition under which the energy of solutions is shown to decay at least as fast as the kernel at infinity.

On étudie le problème de la stabilisation des équations de type hyperbolique par un feedback-mémoire distribué. L'objet de cette Note est de montrer qu'il existe une méthode constructive générale qui permet d'obtenir un taux de décroissance de l'énergie en fonction du comportement au voisinage de l'infini du noyau. Cette méthode permet de retrouver de manière naturelle les résultats connus (cas exponentiel, polynômial, …) mais aussi de définir une classe très générale et quasi-optimale de noyaux à laquelle elle s'applique. Elle permet de montrer sous une condition, aussi très générale, que l'énergie des solutions décroit au moins aussi vite que le noyau à l'infini.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2009.05.011

Fatiha Alabau-Boussouira 1; Piermarco Cannarsa 2

1 L.M.A.M. CNRS-UMR 7122 et INRIA Équipe-projet CORIDA, université Paul-Verlaine-Metz, Ile du Saulcy, 57045 Metz cedex 01, France
2 Dipartimento di Matematica, Università di Roma Tor Vergata, 00133 Roma, Italy
@article{CRMATH_2009__347_15-16_867_0,
     author = {Fatiha Alabau-Boussouira and Piermarco Cannarsa},
     title = {A general method for proving sharp energy decay rates for memory-dissipative evolution equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {867--872},
     publisher = {Elsevier},
     volume = {347},
     number = {15-16},
     year = {2009},
     doi = {10.1016/j.crma.2009.05.011},
     language = {en},
}
TY  - JOUR
AU  - Fatiha Alabau-Boussouira
AU  - Piermarco Cannarsa
TI  - A general method for proving sharp energy decay rates for memory-dissipative evolution equations
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 867
EP  - 872
VL  - 347
IS  - 15-16
PB  - Elsevier
DO  - 10.1016/j.crma.2009.05.011
LA  - en
ID  - CRMATH_2009__347_15-16_867_0
ER  - 
%0 Journal Article
%A Fatiha Alabau-Boussouira
%A Piermarco Cannarsa
%T A general method for proving sharp energy decay rates for memory-dissipative evolution equations
%J Comptes Rendus. Mathématique
%D 2009
%P 867-872
%V 347
%N 15-16
%I Elsevier
%R 10.1016/j.crma.2009.05.011
%G en
%F CRMATH_2009__347_15-16_867_0
Fatiha Alabau-Boussouira; Piermarco Cannarsa. A general method for proving sharp energy decay rates for memory-dissipative evolution equations. Comptes Rendus. Mathématique, Volume 347 (2009) no. 15-16, pp. 867-872. doi : 10.1016/j.crma.2009.05.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.05.011/

[1] F. Alabau-Boussouira Une formule générale pour le taux de décroissance des systèmes dissipatifs non linéaires, C. R. Acad. Sci. Paris, Ser. I, Volume 338 (2004), pp. 35-40

[2] F. Alabau-Boussouira Convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems, Appl. Math. Optim., Volume 51 (2005) no. 1, pp. 61-105

[3] F. Alabau-Boussouira Asymptotic stability of wave equations with memory and frictional boundary dampings, Applicationes Mathematicae, Volume 35 (2008), pp. 247-258

[4] F. Alabau-Boussouira, A unified approach via convexity for optimal energy decay rates of finite and infinite dimensional vibrating damped systems with applications to semi-discretized vibrating damped systems, submitted for publication

[5] F. Alabau-Boussouira, P. Cannarsa, General decay estimates for memory-damped evolution equations, in preparation

[6] F. Alabau-Boussouira; P. Cannarsa; D. Sforza Decay estimates for second order evolution equations with memory, J. Funct. Anal., Volume 254 (2008), pp. 1342-1372

[7] F. Alabau-Boussouira; J. Prüss; R. Zacher Exponential and polynomial stability of a wave equation for boundary memory damping with singular kernels, C. R. Acad. Sci. Paris, Ser. I, Volume 347 (2009), pp. 277-282

[8] F. Ammar-Khodja; A. Benabdallah; J.E. Munoz-Rivera; R. Racke Energy decay for Timoshenko systems of memory type, J. Differential Equations, Volume 194 (2003) no. 1, pp. 82-115

[9] C. Bardos; G. Lebeau; J. Rauch Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., Volume 30 (1992), pp. 1024-1065

[10] P. Cannarsa; D. Sforza A stability result for a class of nonlinear integrodifferential equations with L1 kernels, Applicationes Mathematicae, Volume 35 (2008) no. 4, pp. 395-430

[11] M.M. Cavalcanti; H.P. Oquendo Frictional versus viscoelastic damping in a semilinear wave equation, SIAM J. Control Optim., Volume 42 (2003), pp. 1310-1324

[12] M.M. Cavalcanti; V.N. Domingos Cavalcanti; P. Martinez General decay rate estimates for viscoelastic dissipative systems, Nonlinear Anal., Volume 68 (2008), pp. 177-193

[13] C.M. Dafermos, Asymptotic behavior of solutions of evolution equations, Nonlinear evolution equations, Publ. Math. Res. Center Univ. Wisconsin 40, Academic Press, New York, 1978, pp. 103–123

[14] V. Komornik Exact Controllability and Stabilization, The Multiplier Method, Collection RMA, vol. 36, Masson–John Wiley, Paris–Chichester, 1994

[15] I. Lasiecka; D. Tataru Uniform boundary stabilization of semilinear wave equation with nonlinear boundary damping, Differential Integral Equations, Volume 8 (1993), pp. 507-533

[16] G. Lebeau; E. Zuazua Decay rates for the three-dimensional linear system of thermoelasticity, Arch. Ration. Mech. Anal., Volume 148 (1999), pp. 179-231

[17] J.E. Muñoz Rivera; A. Peres Salvatierra Asymptotic behavior of the energy in partially viscoelastic materials, Quart. Appl. Math., Volume 59 (2001), pp. 557-578

[18] J. Prüss Evolutionary Integral Equations and Applications, Monographs in Mathematics, vol. 87, Birkhäuser Verlag, Basel, 1993

[19] E. Zuazua Exponential decay for the semilinear wave equation with locally distributed damping, Comm. Partial Differential Equations, Volume 15 (1990), pp. 205-235

Cited by Sources:

Comments - Politique