The goal of this Note is to prove that the Laplace transformation of analytic functionals establishes the mutual duality between the spaces and (D being a bounded convex domain in ) and that functions from can be represented in a form of Dirichlet series with frequencies from D.
Le but de cette Note est de démontrer que la transformation de Laplace des fonctionnelles analytiques établit une dualité mutuelle entre les espaces et (D étant un domaine convexe borné dans ) et que des fonctions de peuvent être représentées sous la forme de séries de Dirichlet avec fréquence de D.
Accepted:
Published online:
Alexander V. Abanin 1; Le Hai Khoi 2
@article{CRMATH_2009__347_15-16_863_0,
author = {Alexander V. Abanin and Le Hai Khoi},
title = {On the duality between $ {A}^{-\infty }(D)$ and $ {A}_{D}^{-\infty }$ for convex domains},
journal = {Comptes Rendus. Math\'ematique},
pages = {863--866},
year = {2009},
publisher = {Elsevier},
volume = {347},
number = {15-16},
doi = {10.1016/j.crma.2009.06.008},
language = {en},
}
TY - JOUR
AU - Alexander V. Abanin
AU - Le Hai Khoi
TI - On the duality between $ {A}^{-\infty }(D)$ and $ {A}_{D}^{-\infty }$ for convex domains
JO - Comptes Rendus. Mathématique
PY - 2009
SP - 863
EP - 866
VL - 347
IS - 15-16
PB - Elsevier
DO - 10.1016/j.crma.2009.06.008
LA - en
ID - CRMATH_2009__347_15-16_863_0
ER -
Alexander V. Abanin; Le Hai Khoi. On the duality between $ {A}^{-\infty }(D)$ and $ {A}_{D}^{-\infty }$ for convex domains. Comptes Rendus. Mathématique, Volume 347 (2009) no. 15-16, pp. 863-866. doi: 10.1016/j.crma.2009.06.008
[1] The general form of a continuous linear functional on the space of functions holomorphic in a convex region of , Dokl. Akad. Nauk SSSR, Volume 166 (1966), pp. 1015-1018
[2] Duality between and on domains with non-degenerate corners, Contemp. Math. A.M.S., Volume 185 (1995), pp. 77-87
[3] Y.J. Choi, L.H. Khoi, K.T. Kim, On an explicit construction of weakly sufficient sets for the function algebra , Compl. Variables & Elliptic Equations, in press
[4] The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis, Springer, 1983
[5] Espaces conjugués, ensembles faiblement suffisants discrets et systèmes de représentation exponentielle, Bull. Sci. Math. (2), Volume 113 (1989), pp. 309-347
[6] Inductive and projective topologies. Sufficient sets and representing systems, Math. USSR-Izv., Volume 28 (1987), pp. 529-554
[7] Equations différentielles d'ordre infini, Bull. Soc. Math. France, Volume 95 (1967), pp. 109-154
[8] (DFS)-spaces of holomorphic functions invariant under differentiation, J. Math. Anal. Appl., Volume 297 (2004), pp. 577-586
[9] Harmonic and analytic functions admitting a distribution boundary value, Ann. Scuola Norm. Sup. Pisa, Volume 11 (1984), pp. 559-591
[10] Analytic extension of differentiable functions defined in closed sets, Trans. Amer. Math. Soc., Volume 36 (1934), pp. 63-89
Cited by Sources:
Comments - Policy
