Comptes Rendus
Partial Differential Equations
Remarks on bounded solutions of steady Hamilton–Jacobi equations
[Quelques remarques sur les solutions bornées des équations stationnaires d'Hamilton–Jacobi]
Comptes Rendus. Mathématique, Volume 347 (2009) no. 15-16, pp. 873-878.

Dans cette Note on s'intéresse à l'équation H(Du)=H(0),xRN et plus précisément à la question suivante : dans quels cas les fonctions constantes sont-elles les seules solutions bornées de cette équation ? On démontre que tel est le cas sous des hypothèses de convexité et coercivité en dimension N quelconque. La preuve fait appel à la formule de Hopf–Lax. En une dimension d'espace on propose un résultat pour des hamiltoniens seulement faiblement coercifs moyennant une condition supplémentaire. Dans la dernière partie on utilise ces résultats pour identifier les limites asymptotiques en temps long des solutions des problèmes de Cauchy.

We study here the equation H(Du)=H(0),xRN. More precisely we investigate under which hypotheses the constant functions are the only bounded solutions. In arbitrary space dimension we prove that this happens when convexity and coercivity occur. In one space dimension we show that the above property holds true for Hamiltonians in a larger class. These results apply when studying the long time behaviour of solutions for time-dependent Hamilton–Jacobi equations.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.06.004

Mihaï Bostan 1 ; Gawtum Namah 1

1 Laboratoire de mathématiques de Besançon, UMR CNRS 6623, université de Franche-Comté, 16, route de Gray, 25030 Besançon cedex, France
@article{CRMATH_2009__347_15-16_873_0,
     author = {Miha{\"\i} Bostan and Gawtum Namah},
     title = {Remarks on bounded solutions of steady {Hamilton{\textendash}Jacobi} equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {873--878},
     publisher = {Elsevier},
     volume = {347},
     number = {15-16},
     year = {2009},
     doi = {10.1016/j.crma.2009.06.004},
     language = {en},
}
TY  - JOUR
AU  - Mihaï Bostan
AU  - Gawtum Namah
TI  - Remarks on bounded solutions of steady Hamilton–Jacobi equations
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 873
EP  - 878
VL  - 347
IS  - 15-16
PB  - Elsevier
DO  - 10.1016/j.crma.2009.06.004
LA  - en
ID  - CRMATH_2009__347_15-16_873_0
ER  - 
%0 Journal Article
%A Mihaï Bostan
%A Gawtum Namah
%T Remarks on bounded solutions of steady Hamilton–Jacobi equations
%J Comptes Rendus. Mathématique
%D 2009
%P 873-878
%V 347
%N 15-16
%I Elsevier
%R 10.1016/j.crma.2009.06.004
%G en
%F CRMATH_2009__347_15-16_873_0
Mihaï Bostan; Gawtum Namah. Remarks on bounded solutions of steady Hamilton–Jacobi equations. Comptes Rendus. Mathématique, Volume 347 (2009) no. 15-16, pp. 873-878. doi : 10.1016/j.crma.2009.06.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.06.004/

[1] G. Barles; P.E. Souganidis On the large time behavior of solutions of Hamilton–Jacobi equations, SIAM J. Math. Anal., Volume 31 (2001), pp. 925-939

[2] M. Bostan; G. Namah Time periodic viscosity solutions of Hamilton–Jacobi equations, Comm. Pure Appl. Anal., Volume 6 (2007), pp. 389-410

[3] P. Cannarsa; C. Sinestrari Semiconcave Functions, Hamilton–Jacobi Equations and Optimal Control, Birkhäuser, Boston, 2004

[4] L.C. Evans Partial Differential Equations, American Mathematical Society, Providence, RI, 1998

[5] P.-L. Lions Generalized Solutions of Hamilton–Jacobi Equations, Research Notes in Mathematics, Pitman, 1982

[6] J.-M. Roquejoffre Convergence to steady states or periodic solutions in a class of Hamilton–Jacobi equations, J. Math. Pures Appl., Volume 80 (2001), pp. 85-104

Cité par Sources :

Commentaires - Politique