Let φ denote the Euler totient function, and let P be a monic polynomial with integer coefficients and positive degree. Combining the techniques of proof from our previous paper and that of a recent paper by Hernández and Luca we generalize the following result of Hernández and Luca: the set of composite positive integers n such that and is finite. The generalization is of the quantitative type, and applies also to the so-called unitary analogue of the Lehmer problem (studied earlier by Subbarao and Siva Rama Prasad).
Soit φ la fonction indicatrice d'Euler, et P un polynôme unitaire à coefficients entiers et de degré strictement positif. En combinant les techniques de démonstration de notre précédent article et celles d'un article récent de Hernández et Luca, nous généralisons le résultat suivant de Hernández et Luca : l'ensemble des entiers n strictement positifs composés tels que et , est fini. La généralisation est quantitative, et s'applique aussi à l'analogue unitaire du problème de Lehmer (antérieurement étudié par Subbarao et Siva Rama Prasad).
Accepted:
Published online:
Marek Wójtowicz 1; Marta Skonieczna 1
@article{CRMATH_2009__347_19-20_1111_0, author = {Marek W\'ojtowicz and Marta Skonieczna}, title = {Appendix to the {Note} {{\textquotedblleft}The} structure of the set of numbers with the {Lehmer} property{\textquotedblright}}, journal = {Comptes Rendus. Math\'ematique}, pages = {1111--1114}, publisher = {Elsevier}, volume = {347}, number = {19-20}, year = {2009}, doi = {10.1016/j.crma.2009.07.019}, language = {en}, }
TY - JOUR AU - Marek Wójtowicz AU - Marta Skonieczna TI - Appendix to the Note “The structure of the set of numbers with the Lehmer property” JO - Comptes Rendus. Mathématique PY - 2009 SP - 1111 EP - 1114 VL - 347 IS - 19-20 PB - Elsevier DO - 10.1016/j.crma.2009.07.019 LA - en ID - CRMATH_2009__347_19-20_1111_0 ER -
Marek Wójtowicz; Marta Skonieczna. Appendix to the Note “The structure of the set of numbers with the Lehmer property”. Comptes Rendus. Mathématique, Volume 347 (2009) no. 19-20, pp. 1111-1114. doi : 10.1016/j.crma.2009.07.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.07.019/
[1] On the equation , Integers: Electronic Journal of Combinatorial Number Theory, Volume 6 (2006) (Paper A06)
[2] On a Lehmer problem concerning Euler's totient function, Proc. Japan Acad. Ser. A, Volume 79 (2003), pp. 136-138
[3] Unsolved Problems in Number Theory, Springer-Verlag, New York, 2004
[4] A note on Deaconescu's result concerning Lehmer's problem, Integers: Electronic Journal of Combinatorial Number Theory, Volume 8 (2008) (Paper A12)
[5] On Euler's totient function, Bull. Amer. Math. Soc., Volume 38 (1932), pp. 745-751
[6] Topics in Number Theory, vol. I, Dower Publications Inc., New York, 2002
[7] Estimation de la fonction de Tchebychef θ sur le k-ième nombre premier et grandes valuers de la fonction nombre de diviseurs premiers de n, Acta Arith., Volume 42 (1983), pp. 367-389
[8] Approximation formulas for some functions of prime numbers, Illinois J. Math., Volume 6 (1962), pp. 64-94
[9] Inequalities related to the unitary analogue of Lehmer problem, J. Inequal. Pure Appl. Math., Volume 7 (2006) (Article 142)
[10] Some results on the unitary analogue of the Lehmer problem, J. Inequal. Pure Appl. Math., Volume 9 (2008) (Article 55)
[11] Some analogues of a Lehmer problem on the totient function, Rocky Mountain J. Math., Volume 15 (1985), pp. 609-619
[12] The structure of the set of numbers with the Lehmer property, C. R. Acad. Sci. Paris Ser. I, Volume 346 (2008), pp. 727-728
Cited by Sources:
Comments - Policy