Number Theory
Appendix to the Note “The structure of the set of numbers with the Lehmer property”
Comptes Rendus. Mathématique, Volume 347 (2009) no. 19-20, pp. 1111-1114.

Let φ denote the Euler totient function, and let P be a monic polynomial with integer coefficients and positive degree. Combining the techniques of proof from our previous paper and that of a recent paper by Hernández and Luca we generalize the following result of Hernández and Luca: the set of composite positive integers n such that $φ(n)|n−1$ and is finite. The generalization is of the quantitative type, and applies also to the so-called unitary analogue of the Lehmer problem (studied earlier by Subbarao and Siva Rama Prasad).

Soit φ la fonction indicatrice d'Euler, et P un polynôme unitaire à coefficients entiers et de degré strictement positif. En combinant les techniques de démonstration de notre précédent article et celles d'un article récent de Hernández et Luca, nous généralisons le résultat suivant de Hernández et Luca : l'ensemble des entiers n strictement positifs composés tels que $φ(n)|n−1$ et , est fini. La généralisation est quantitative, et s'applique aussi à l'analogue unitaire du problème de Lehmer (antérieurement étudié par Subbarao et Siva Rama Prasad).

Accepted:
Published online:
DOI: 10.1016/j.crma.2009.07.019

Marek Wójtowicz 1; Marta Skonieczna 1

1 Instytut Matematyki, Uniwersytet Kazimierza Wielkiego, Pl. Weyssenhoffa 11, 85-072 Bydgoszcz, Poland
@article{CRMATH_2009__347_19-20_1111_0,
author = {Marek W\'ojtowicz and Marta Skonieczna},
title = {Appendix to the {Note} {{\textquotedblleft}The} structure of the set of numbers with the {Lehmer} property{\textquotedblright}},
journal = {Comptes Rendus. Math\'ematique},
pages = {1111--1114},
publisher = {Elsevier},
volume = {347},
number = {19-20},
year = {2009},
doi = {10.1016/j.crma.2009.07.019},
language = {en},
}
TY  - JOUR
AU  - Marek Wójtowicz
AU  - Marta Skonieczna
TI  - Appendix to the Note “The structure of the set of numbers with the Lehmer property”
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 1111
EP  - 1114
VL  - 347
IS  - 19-20
PB  - Elsevier
DO  - 10.1016/j.crma.2009.07.019
LA  - en
ID  - CRMATH_2009__347_19-20_1111_0
ER  - 
%0 Journal Article
%A Marek Wójtowicz
%A Marta Skonieczna
%T Appendix to the Note “The structure of the set of numbers with the Lehmer property”
%J Comptes Rendus. Mathématique
%D 2009
%P 1111-1114
%V 347
%N 19-20
%I Elsevier
%R 10.1016/j.crma.2009.07.019
%G en
%F CRMATH_2009__347_19-20_1111_0
Marek Wójtowicz; Marta Skonieczna. Appendix to the Note “The structure of the set of numbers with the Lehmer property”. Comptes Rendus. Mathématique, Volume 347 (2009) no. 19-20, pp. 1111-1114. doi : 10.1016/j.crma.2009.07.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.07.019/

[1] M. Deaconescu On the equation $m−1=aφ(n)$, Integers: Electronic Journal of Combinatorial Number Theory, Volume 6 (2006) (Paper A06)

[2] A. Grytczuk; M. Wójtowicz On a Lehmer problem concerning Euler's totient function, Proc. Japan Acad. Ser. A, Volume 79 (2003), pp. 136-138

[3] R. Guy Unsolved Problems in Number Theory, Springer-Verlag, New York, 2004

[4] S.H. Hernández; F. Luca A note on Deaconescu's result concerning Lehmer's problem, Integers: Electronic Journal of Combinatorial Number Theory, Volume 8 (2008) (Paper A12)

[5] D.H. Lehmer On Euler's totient function, Bull. Amer. Math. Soc., Volume 38 (1932), pp. 745-751

[6] W.J. LeVeque Topics in Number Theory, vol. I, Dower Publications Inc., New York, 2002

[7] G. Robin Estimation de la fonction de Tchebychef θ sur le k-ième nombre premier et grandes valuers de la fonction $ω(n)$ nombre de diviseurs premiers de n, Acta Arith., Volume 42 (1983), pp. 367-389

[8] J.B. Rosser; L. Schoenfeld Approximation formulas for some functions of prime numbers, Illinois J. Math., Volume 6 (1962), pp. 64-94

[9] V. Siva Rama Prasad; U. Dixit Inequalities related to the unitary analogue of Lehmer problem, J. Inequal. Pure Appl. Math., Volume 7 (2006) (Article 142)

[10] M. Skonieczna Some results on the unitary analogue of the Lehmer problem, J. Inequal. Pure Appl. Math., Volume 9 (2008) (Article 55)

[11] M.V. Subbarao; V. Siva Rama Prasad Some analogues of a Lehmer problem on the totient function, Rocky Mountain J. Math., Volume 15 (1985), pp. 609-619

[12] M. Wójtowicz; M. Skonieczna The structure of the set of numbers with the Lehmer property, C. R. Acad. Sci. Paris Ser. I, Volume 346 (2008), pp. 727-728

Cited by Sources: