Let φ be the Euler totient function, and let be fixed integers with and . A positive integer n has the Lehmer property if it is composite and divides . We give a short proof that the set – of numbers n with the Lehmer property that fulfil the extra condition – is finite. This is an extension of a result obtained recently by Deaconescu.
Soit φ la fonction indicatrice d'Euler, et soient des entiers fixés tels que et . Un entier strictement positif n a la propriété de Lehmer s'il est composé et si divise . On donne une courte preuve du fait que l'ensemble – des nombres n possédant la propriété de Lehmer et qui vérifient la condition supplémentaire suivante – est fini. Ceci est une extension d'un résultat obtenu récemment par Deaconescu.
Accepted:
Published online:
Marek Wójtowicz 1; Marta Skonieczna 1
@article{CRMATH_2008__346_13-14_727_0, author = {Marek W\'ojtowicz and Marta Skonieczna}, title = {The structure of the set of numbers with the {Lehmer} property}, journal = {Comptes Rendus. Math\'ematique}, pages = {727--728}, publisher = {Elsevier}, volume = {346}, number = {13-14}, year = {2008}, doi = {10.1016/j.crma.2008.05.002}, language = {en}, }
Marek Wójtowicz; Marta Skonieczna. The structure of the set of numbers with the Lehmer property. Comptes Rendus. Mathématique, Volume 346 (2008) no. 13-14, pp. 727-728. doi : 10.1016/j.crma.2008.05.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.05.002/
[1] On the number of prime factors of n if , Nieuw Arch. Wisk. (3), Volume 28 (1980), pp. 177-185
[2] On the equation , Integers: Electronic Journal of Combinatorial Number Theory, Volume 6 (2006) (Paper A06)
[3] On a Lehmer problem concerning Euler's totient function, Proc. Japan Acad. Ser. A, Volume 79 (2003), pp. 136-138
[4] On the equation , Nieuw Arch. Wisk. (4), Volume 6 (1988), pp. 225-261
[5] On Euler's totient function, Bull. Amer. Math. Soc., Volume 38 (1932), pp. 745-751
[6] Fibonacci numbers with the Lehmer property, Bull. Pol. Acad. Sci. Math., Volume 55 (2007), pp. 7-15
Cited by Sources:
Comments - Policy