[Champs de vecteurs de Killing de type de Liouville horizontal]
Sur un fibré tangent doté d'une métrique Riemannienne de type Sasaki–Finsler, nous introduisons deux champs de vecteurs de type de Liouville horizontal et nous prouvons que ces champs sont de Killing si et seulement si la variété de Finsler de base possède une courbure constante positive. Dans le cas particulier de l'un d'entre eux, nous montrons que si le champ de vecteurs est de Killing, alors la base est une variété de Finsler–Einstein.
On a slit tangent bundle endowed with a Riemannian metric of Sasaki–Finsler type, we introduce two vector fields of horizontal Liouville type and prove that these vector fields are Killing if and only if the base Finsler manifold is of positive constant curvature. In the special case of one of them, we show that if it is Killing vector field then the base manifold is Einstein–Finsler manifold.
Accepté le :
Publié le :
Esmaeil Peyghan 1 ; Akbar Tayebi 2
@article{CRMATH_2011__349_3-4_205_0, author = {Esmaeil Peyghan and Akbar Tayebi}, title = {Killing vector fields of horizontal {Liouville} type}, journal = {Comptes Rendus. Math\'ematique}, pages = {205--208}, publisher = {Elsevier}, volume = {349}, number = {3-4}, year = {2011}, doi = {10.1016/j.crma.2011.01.009}, language = {en}, }
Esmaeil Peyghan; Akbar Tayebi. Killing vector fields of horizontal Liouville type. Comptes Rendus. Mathématique, Volume 349 (2011) no. 3-4, pp. 205-208. doi : 10.1016/j.crma.2011.01.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.01.009/
[1] A geometric characterization of Finsler manifolds of constant curvature , Int. J. Math. Math. Sci., Volume 23 (2000), pp. 399-407
[2] Finsler geometry and natural foliations on the tangent bundle, Rep. Math. Phys., Volume 58 (2006), pp. 131-146
[3] Finsler structures on the 2-sphere satisfying , Amer. Math. Soc., 1996, pp. 27-41
[4] Liouville and geodesic Ricci soliton, C. R. Acad. Sci. Paris, Ser. I, Volume 347 (2009), pp. 1305-1308
[5] Homogenous Eintein–Randers spaces of negative Ricci curvature, C. R. Acad. Sci. Paris, Ser. I, Volume 347 (2009), pp. 1169-1172
[6] The explicit constraction of Einstein Finsler metrics with non-constant flag curvature, SIGMA Symmetry Integrability Geom. Methods Appl. (2009), pp. 1-7
[7] The Geometry of Hamilton and Lagrange Spaces, Fundam. Theor. Phys., vol. 118, Kluwer Academic Publishers, 2001
[8] A Kähler structure on Finsler spaces with non-zero constant flag curvature, J. Math. Phys., Volume 51 (2010), pp. 1-11
[9] Finsler and Lagrange geometries in Einstein and string gravity, Int. J. Geom. Methods Mod. Phys., Volume 5 (2008), pp. 473-511
[10] Finsler black holes induced by noncommutative an holonomic distributions in Einstein gravity, Classical Quantum Gravity, Volume 27 (2010), pp. 1-19
Cité par Sources :
Commentaires - Politique