We prove the classical Alexandroff–Bakelman–Pucci estimate for fully nonlinear elliptic equations involving singular or degenerate operators having as models , where are the Pucci extremal operators with parameters and .
Nous prouvons l'inégalité classique d'Alexandroff–Bakelman–Pucci pour des équations elliptiques entièrement non linéaires avec des opérateurs singulières ou dégénérés ayant comme modèles où sont les opérateurs extremal de Pucci avec des paramètres et .
Accepted:
Published online:
Gonzalo Dávila 1; Patricio Felmer 1; Alexander Quaas 2
@article{CRMATH_2009__347_19-20_1165_0, author = {Gonzalo D\'avila and Patricio Felmer and Alexander Quaas}, title = {Alexandroff{\textendash}Bakelman{\textendash}Pucci estimate for singular or degenerate fully nonlinear elliptic equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {1165--1168}, publisher = {Elsevier}, volume = {347}, number = {19-20}, year = {2009}, doi = {10.1016/j.crma.2009.09.009}, language = {en}, }
TY - JOUR AU - Gonzalo Dávila AU - Patricio Felmer AU - Alexander Quaas TI - Alexandroff–Bakelman–Pucci estimate for singular or degenerate fully nonlinear elliptic equations JO - Comptes Rendus. Mathématique PY - 2009 SP - 1165 EP - 1168 VL - 347 IS - 19-20 PB - Elsevier DO - 10.1016/j.crma.2009.09.009 LA - en ID - CRMATH_2009__347_19-20_1165_0 ER -
%0 Journal Article %A Gonzalo Dávila %A Patricio Felmer %A Alexander Quaas %T Alexandroff–Bakelman–Pucci estimate for singular or degenerate fully nonlinear elliptic equations %J Comptes Rendus. Mathématique %D 2009 %P 1165-1168 %V 347 %N 19-20 %I Elsevier %R 10.1016/j.crma.2009.09.009 %G en %F CRMATH_2009__347_19-20_1165_0
Gonzalo Dávila; Patricio Felmer; Alexander Quaas. Alexandroff–Bakelman–Pucci estimate for singular or degenerate fully nonlinear elliptic equations. Comptes Rendus. Mathématique, Volume 347 (2009) no. 19-20, pp. 1165-1168. doi : 10.1016/j.crma.2009.09.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.09.009/
[1] The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math., Volume 47 (1994) no. 1, pp. 47-92
[2] On the method of moving planes and the sliding method, Boll. Soc. Brasil Mat. (N.S.), Volume 22 (1991), pp. 237-275
[3] Comparison principle and Liouville type results for singular fully nonlinear operators, Ann. Fac. Sci Toulouse Math. (6), Volume 13 (2004) no. 2, pp. 261-287
[4] Eigenvalue and maximum principle for fully nonlinear singular operators, Adv. Partial Differ. Equ., Volume 11 (2006) no. 1, pp. 91-119
[5] Eigenvalue, maximum principle and regularity for fully nonlinear homogeneous operators, Commun. Pure Appl. Anal., Volume 6 (2007), pp. 335-366
[6] The Dirichlet problem for singular fully nonlinear operators, Discrete Contin. Dyn. Syst. (special vol.) (2007), pp. 110-121
[7] Eigenvalue and Dirichlet problem for fully-nonlinear operators in non-smooth domains, J. Math. Anal. Appl., Volume 352 (2009) no. 2, pp. 822-835
[8] Fully Nonlinear Elliptic Equations, Colloquium Publications, vol. 43, American Mathematical Society, 1995
[9] On viscosity solutions of fully nonlinear equations with measurable ingredients, Comm. Pure Appl. Math., Volume 49 (1996) no. 4, pp. 365-398
[10] Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geom., Volume 33 (1991), pp. 749-786
[11] G. Dávila, P. Felmer, A. Quaas, Harnack inequality for singular fully nonlinear operators and some existence results, preprint
[12] Motion of level sets by mean curvature, J. Differential Geom., Volume 33 (1991), pp. 635-681
[13] Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983
[14] C. Imbert, Alexandroff–Bakelman–Pucci estimate and Harnack inequality for degenerate fully non-linear elliptic equations, preprint
[15] T. Junges Miotto, The Aleksandrov–Bakelman–Pucci estimate for singular fully nonlinear operators, preprint
[16] On the principal eigenvalues and the Dirichlet problem for fully nonlinear operators, Adv. Math., Volume 218 (2008) no. 1, pp. 105-135
Cited by Sources:
Comments - Policy