[Solitons de Ricci de type Liouville et de type géodésique]
Pour le fibré tangent d'une variété équipée d'une métrique pseudo-Riemannienne ayant un relèvement complet, deux classes de solitons de Ricci sont décrits : une famille à 1 paramètre de solitons de Ricci de type Liouville contractants si la variété de base est Ricci plate, et un soliton de Ricci de type géodésique nul si celle-ci est plate. Un résultat de non-existence de solitons de Ricci géodésiques est également obtenu dans le cas du fibré tangent d'une variété non plate.
On a tangent bundle endowed with a pseudo-Riemannian metric of complete lift type two classes of Ricci solitons are obtained: a 1-parameter family of shrinking Liouville Ricci solitons if the base manifold is Ricci flat and a steady geodesic Ricci soliton if the base manifold is flat. A nonexistence result of geodesic Ricci solitons for the tangent bundle of a non-flat space form is also provided.
Accepté le :
Publié le :
Mircea Crasmareanu 1
@article{CRMATH_2009__347_21-22_1305_0, author = {Mircea Crasmareanu}, title = {Liouville and geodesic {Ricci} solitons}, journal = {Comptes Rendus. Math\'ematique}, pages = {1305--1308}, publisher = {Elsevier}, volume = {347}, number = {21-22}, year = {2009}, doi = {10.1016/j.crma.2009.10.008}, language = {en}, }
Mircea Crasmareanu. Liouville and geodesic Ricci solitons. Comptes Rendus. Mathématique, Volume 347 (2009) no. 21-22, pp. 1305-1308. doi : 10.1016/j.crma.2009.10.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.10.008/
[1] Foliations and Geometric Structures, Mathematics and Its Applications, vol. 580, Springer, Dordrecht, 2006 MR2190039 (2006j:53034)
[2] Einstein Manifolds, Classics in Mathematics, Springer-Verlag, Berlin, 2008 MR 2371700 (2008k:53084)
[3] The Ricci Flow: An Introduction, Mathematical Surveys and Monographs, vol. 110, American Mathematical Society, Providence, RI, 2004 MR2061425 (2005e:53101)
[4] Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles. A classification, Bull. Tokyo Gakugei Univ., Volume 40 (1988) no. 4, pp. 1-29 MR 0974641 (89m:53067)
[5] Some classes of almost anti-Hermitian structures on the tangent bundle, Mediterr. J. Math., Volume 1 (2004) no. 3, pp. 269-282 MR 2094465 (2005e:53038)
[6] A Ricci flat pseudo-Riemannian metric on the tangent bundle of a Riemannian manifold, Colloq. Math., Volume 87 (2001) no. 2, pp. 227-233 MR 1814667 (2002a:53086)
[7] A locally symmetric pseudo-Riemannian structure on the tangent bundle, Publ. Math. Debrecen, Volume 59 (2001) no. 3–4, pp. 303-315 MR1874433 (2002i:53040)
[8] Some geometric structures on the tangent bundle of a Riemannian manifold, Demonstratio Math., Volume 37 (2004) no. 1, pp. 215-228 MR2053117 (2005a:53047)
[9] Some locally symmetric anti-Hermitian structures on the tangent bundle, An. Stiint. Univ. Al. I. Cuza Iasi. Mat., Volume 52 (2006) no. 2, pp. 277-287 MR2341094 (2008f:53097)
[10] Tangent and Cotangent Bundles: Differential Geometry, Pure and Applied Mathematics, vol. 16, Marcel Dekker, Inc., New York, 1973 MR 0350650 (50 #3142)
Cité par Sources :
Commentaires - Politique