[Solitons spatiaux quadratiques]
Les solitons spatiaux quadratiques, rayons qui se propagent à forme et amplitude constantes, sont gouvernés par les non-linéarités optiques du deuxième ordre et peuvent, dans des conditions appropriées, se produire dans tous les processus de mélange d'ondes. Ils sont multi-composantes, constitués de toutes les composantes fréquentielles qui sont couplées par une interaction non linéaire du deuxième ordre au voisinage d'une condition d'accord de phase. Ils ont été observés dans un certain nombre de milieux cristallins en volume, de guides d'ondes planaires en LiNbO3 et sur des ensembles de guides d'ondes canaux en LiNbO3, parallèles et faiblement couplés. Cet article fait le point sur les propriétés des solitons et leur processus d'excitation.
Quadratic spatial solitons, beams that propagate unchanged in shape and magnitude, are supported by second order optical nonlinearities and can occur in all wave mixing processes under appropriate conditions. They are multi-component, consisting of all the frequency components that are coupled by a second order nonlinear interaction near a phase-matching condition. They have been observed in a number of bulk crystalline media, in LiNbO3 slab waveguides and in arrays of parallel, weakly coupled, LiNbO3 channel waveguides. The properties of the solitons and their excitation will be reviewed.
Mot clés : Soliton, Solitons spatiaux quadratiques
George I. Stegeman 1
@article{CRPHYS_2007__8_2_221_0, author = {George I. Stegeman}, title = {Quadratic spatial solitons}, journal = {Comptes Rendus. Physique}, pages = {221--233}, publisher = {Elsevier}, volume = {8}, number = {2}, year = {2007}, doi = {10.1016/j.crhy.2006.02.008}, language = {en}, }
George I. Stegeman. Quadratic spatial solitons. Comptes Rendus. Physique, Volume 8 (2007) no. 2, pp. 221-233. doi : 10.1016/j.crhy.2006.02.008. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.02.008/
[1] Generation of optical harmonics, Phys. Rev. Lett. (1961), pp. 118-120
[2] Nonlinear Optics, The Principles of Nonlinear OpticsApplied Classical Electrodynamics, vol. 2: Nonlinear OpticsNonlinear Optics, Benjamen, Reading, MA, 1965
[3] Nonlinear Waves, Solitons and Chaos, Solitons, Nonlinear Pulses and Beams, Cambridge Univ. Press, Cambridge, 1990
[4] Propagation soliton et auto-confinement de faisceaux laser par non linearité optique de Kerr, Opt. Comm., Volume 55 (1985), pp. 201-206
[5] Quasi-steady state self-trapping of first, second and third order sub-nanosecond soliton beams, Opt. Commun., Volume 66 (1988), pp. 325-329
[6] Observation of spatial optical solitons in a nonlinear glass waveguide, Opt. Lett., Volume 15 (1990), pp. 471-473
[7] Observation of spatial solitons in AlGaAs waveguides, Electron. Lett., Volume 28 (1992), pp. 1879-1880
[8] Self-focusing of optical beams, Phys. Rev. Lett., Volume 15 (1965), pp. 1005-1008
[9] cw self-focusing and self-trapping of light in sodium vapor, Phys. Rev. Lett., Volume 32 (1974), pp. 129-132
[10] Observation of self-trapping of an optical beam due to the photorefractive effect, Phys. Rev. Lett., Volume 71 (1993), pp. 533-536
[11] Observation of two-dimensional steady-state photorefractive screening solitons, Electron. Lett., Volume 31 (1995), pp. 826-827
[12] Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells, Appl. Phys. Let., Volume 77 (2000), pp. 7-9
[13] Stable dissipative spatial solitons in semiconductor optical amplifiers, Phys. Rev. Lett., Volume 90 (2003), pp. 3903-3906
[14] Mutual focusing of high-power light beams in media with quadratic nonlinearity, Sov. Phys. JETP, Volume 20 (1974), pp. 339-342
[15] Self-action of light in crystals, JETP Lett., Volume 5 (1867), pp. 272-275 Reviewed in cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons J. Opt. Quant. Electron., 28, 1996, pp. 1691-1740
[16] One-dimensional spatial solitons due to cascaded second-order nonlinearities in planar waveguides, Phys. Rev. E, Volume 53 (1996), pp. 1138-1141
[17] One-dimensional spatial soliton families in optimally engineered QPM lithium niobate waveguides, Opt. Lett., Volume 29 (2004), pp. 596-598
[18] Observation of two-dimensional spatial solitary waves in a quadratic medium, Phys. Rev. Lett., Volume 74 (1995), pp. 5036-5039
[19] Two-dimensional spatial solitary waves from traveling wave parametric amplification of the quantum noise, Phys. Rev. Lett., Volume 80 (1998), pp. 265-269
[20] Observation of quadratic spatial solitons in periodically poled lithium niobate, Opt. Lett., Volume 24 (1999), pp. 1410-1412
[21] Generation of optical spatiotemporal solitons, Phys. Rev. Lett., Volume 82 (1999), pp. 4631-4634
[22] Two-dimensional Type I quadratic spatial solitons in KNbO3 near non-critical phase-matching, Opt. Lett., Volume 27 (2002), pp. 631-633
[23] Quadratic spatial solitons in periodically poled KTiOPO4, Opt. Lett., Volume 28 (2003), pp. 640-642
[24] Observation of discrete quadratic solitons, Phys. Rev. Lett. (2004), p. 113902
[25] Highly localized discrete quadratic solitons in periodically poled lithium niobate waveguide arrays, Opt. Lett., Volume 30 (2005), pp. 1033-1035
[26] Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications, Phys. Rep., Volume 370 (2002), pp. 63-235
[27] Second harmonic generation and cascading nonlinearity in titanium-indiffused lithium niobate channel waveguides, J. Opt. Soc. Am. B, Volume 15 (1998), pp. 2255-2268
[28] Solitons due to second harmonic generation, Phys. Lett. A, Volume 19 (1994), pp. 1612-1614 (Erratum)
[29] Solitary waves due to cascading, J. Opt. Soc. Am. B, Volume 11 (1994), pp. 2434-2443
[30] Eigenmodes of wave mixings: cross-induced second-order nonlinear refraction, Opt. Lett., Volume 18 (1993), pp. 1223-1225
[31] The simple physics of quadratic spatial solitons, Opt. Express, Volume 10 (2002), pp. 388-396
[32] Stationary solitary waves with second-order nonlinearities, Opt. Commun., Volume 114 (1995), pp. 136-140
[33] Solitons with second-order nonlinearities, J. Opt. Soc. Am. B, Volume 19 (1994), pp. 1615-1617
[34] Soliton excitation and mutual locking of light beams in bulk quadratic nonlinear crystals, J. Opt. Soc. Am. B, Volume 13 (1996), pp. 864-875
[35] One-dimensional quadratic walking solitons, Opt. Lett., Volume 24 (1999), pp. 83-85
[36] Periodical waves, domain walls, and modulational instability in dispersive quadratic nonlinear media, Phys. Rev. E, Volume 20 (1995), pp. 438-440
[37] Beam evolution in quadratically nonlinear 1-dimensional media: LiNbO3 slab waveguides, Laser Phys., Volume 13 (2003), pp. 137-147
[38] Spatial modulational instability in one-dimensional LiNbO3 slab waveguides, Opt. Lett., Volume 25 (2000), pp. 1786-1788
[39] Solitonic turbulence in nonintegrable wave systems, Sov. Phys. JETP, Volume 96 (1989), pp. 2026-2048
[40] Stationary trapping of light beams in bulk second-order nonlinear media, Opt. Commun., Volume 121 (1995), pp. 149-155
[41] Walking solitons in quadratic nonlinear media, Phys. Rev. Lett., Volume 77 (1996), pp. 2455-2458
[42] Existence and properties of quadratic solitons in anisotropic media: variational approach, Phys. Rev. E, Volume 66 (2002), p. 046622
[43] Effects of anisotropic diffraction on quadratic multi soliton excitation in non-critically phase-matched crystal, Opt. Lett., Volume 27 (2002), pp. 1049-1051
[44] Second harmonic generation, beam dynamics and spatial soliton generation in periodically poled KTiOPO4 (PPKTP), Acta Phys. Polon., Volume 103 (2003), pp. 107-120
[45] Observation of multiple soliton generation mediated by amplification of asymmetries, Phys. Rev. E, Volume 67 (2003) (046616-1)
[46] Properties of quadratic multi-soliton generation near phase-match in periodically poled potassium titanyl phosphate, Opt. Express, Volume 11 (2003), pp. 1328-1337
[47] Complex soliton-like pattern generation in Potassium Niobate due to noisy, high intensity, input beams, Opt. Express, Volume 11 (2003), pp. 2206-2210
[48] Characteristics of second harmonic generation with quadratic soliton generation versus conventional methods, J. Opt. Soc. Am. B, Volume 15 (1998), pp. 2769-2773
[49] Discretizing light behavior in linear and nonlinear waveguide lattices, Nature, Volume 424 (2003), pp. 817-823
[50] Discrete spatial optical solitons in waveguide arrays, Phys. Rev. Lett., Volume 81 (1998), pp. 3383-3386
[51] Observation of two-dimensional discrete solitons in optically-induced nonlinear photonic lattices, Nature, Volume 422 (2003), pp. 147-151
[52] Discrete propagation and spatial solitons in nematic liquid crystals, Opt. Lett., Volume 29 (2004), pp. 1530-1532
[53] Arrays of weakly coupled, periodically poled lithium niobate waveguide arrays: beam propagation and discrete spatial quadratic solitons, J. Optoelectron. Rev., Volume 13 (2005), pp. 113-121
[54] Discrete bright solitary waves in quadratically nonlinear media, Phys. Rev. E, Volume 57 (1998), pp. 1127-1133
[55] Optical shock waves in media with quadratic nonlinearity, Phys. Rev. E, Volume 57 (1998), pp. 2344-2349 (R4120-3)
[56] Discrete modulational instability in periodically poled lithium niobate waveguide arrays, Opt. Express, Volume 13 (2005), pp. 7794-7799
[57] Observation of surface discrete solitons, Phys. Rev. Lett., Volume 96 (2006) no. 6, p. 063901
Cité par Sources :
Commentaires - Politique