[Équations différentielles doublement stochastiques rétrogrades réfléchies gouvernées par un processus de Lévy]
On démontre l'existence et l'unicité de la solution d'équations différentielles doublement stochastiques rétrogrades réfléchies (RBDSDE) gouvernées par des martingales de Teugels associées à un processus de Lévy dans lequel le processus obstacle est continu à droite et possède une limite à gauche (càdlàg), via l'enveloppe de Snell et un théorème de point fixe.
We prove the existence and uniqueness of a solution for reflected backward doubly stochastic differential equations (RBDSDEs) driven by Teugels martingales associated with a Lévy process, in which the obstacle process is right continuous with left limits (càdlàg), via Snell envelope and the fixed point theorem.
Accepté le :
Publié le :
Yong Ren 1
@article{CRMATH_2010__348_7-8_439_0, author = {Yong Ren}, title = {Reflected backward doubly stochastic differential equations driven by a {L\'evy} process}, journal = {Comptes Rendus. Math\'ematique}, pages = {439--444}, publisher = {Elsevier}, volume = {348}, number = {7-8}, year = {2010}, doi = {10.1016/j.crma.2009.11.004}, language = {en}, }
Yong Ren. Reflected backward doubly stochastic differential equations driven by a Lévy process. Comptes Rendus. Mathématique, Volume 348 (2010) no. 7-8, pp. 439-444. doi : 10.1016/j.crma.2009.11.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.11.004/
[1] One barrier reflected backward doubly stochastic differential equations with continuous generator, C. R. Acad. Sci. Paris, Ser. I, Volume 347 (2009), pp. 1201-1206
[2] Reflected BSDEs with discontinuous barrier and applications, Stochastics Stochastics Rep., Volume 74 (2002), pp. 571-596
[3] Reflected backward stochastic differential equations with jumps and random obstacle, Electron. J. Probab., Volume 8 (2003), pp. 1-20
[4] Semimartingale and Stochastic Analysis, Scientific Press, Beijing, 1995
[5] Penalization method for reflected backward stochastic differential equations with one r.c.l.l. barrier, Statist. Probab. Lett., Volume 75 (2005), pp. 58-66
[6] Chaotic and predictable representation for Lévy processes, Stochastic Process. Appl., Volume 90 (2000), pp. 109-122
[7] Reflected backward stochastic differential equation driven by Lévy processes, Statist. Probab. Lett., Volume 77 (2007), pp. 1559-1566
[8] Stochastic PDIEs and backward doubly stochastic differential equations driven by Lévy processes, J. Comput. Appl. Math., Volume 223 (2009), pp. 901-907
- Averaging principle for RBDSDEs with Poisson jumps, Random Operators and Stochastic Equations, Volume 33 (2025) no. 1, p. 75 | DOI:10.1515/rose-2025-2002
- Penalization method for reflected BDSDEs with two-sided jumps and driven by Lévy process, Bulletin des Sciences Mathématiques, Volume 186 (2023), p. 103282 | DOI:10.1016/j.bulsci.2023.103282
- RBDSDEs with jumps and optional Barrier and mean field game with common noise, Stochastics, Volume 95 (2023) no. 4, p. 615 | DOI:10.1080/17442508.2022.2113080
- Two-barriers reflected backward doubly SDEs beyond right continuity, Random Operators and Stochastic Equations, Volume 30 (2022) no. 4, p. 271 | DOI:10.1515/rose-2022-2089
- Reflected backward doubly stochastic differential equations with discontinuous barrier, Stochastics, Volume 92 (2020) no. 7, p. 1100 | DOI:10.1080/17442508.2019.1691207
- Recurrence of bounded solutions to a semilinear integro-differential equation perturbed by Lévy noise, Asymptotic Analysis, Volume 109 (2018) no. 1-2, p. 27 | DOI:10.3233/asy-181466
- Reflected solutions of generalized anticipated backward double stochastic differential equations, Random Operators and Stochastic Equations, Volume 25 (2017) no. 1, p. 49 | DOI:10.1515/rose-2017-0005
- Stepanov-Like Pseudo Almost Automorphic Solutions to Some Stochastic Differential Equations, Bulletin of the Malaysian Mathematical Sciences Society, Volume 39 (2016) no. 1, p. 181 | DOI:10.1007/s40840-015-0168-3
- Asymptotically almost automorphic solutions to stochastic differential equations driven by a Lévy process, Stochastics, Volume 88 (2016) no. 7, p. 980 | DOI:10.1080/17442508.2016.1178748
- Reflected backward doubly stochastic differential equations driven by a Lévy process with stochastic Lipschitz condition, Applied Mathematics and Computation, Volume 219 (2012) no. 3, p. 1153 | DOI:10.1016/j.amc.2012.07.023
- On a class of backward doubly stochastic differential equations, Applied Mathematics and Computation, Volume 217 (2011) no. 21, p. 8754 | DOI:10.1016/j.amc.2011.03.128
- Numerical Method for Reflected Backward Stochastic Differential Equations, Stochastic Analysis and Applications, Volume 29 (2011) no. 6, p. 1008 | DOI:10.1080/07362994.2011.610162
Cité par 12 documents. Sources : Crossref
☆ The work is supported by the National Natural Science Foundation of China (Project 10901003) and the Great Research Project of Natural Science Foundation of Anhui Provincial Universities.
Commentaires - Politique