[Équations différentielles doublement stochastiques rétrogrades réfléchies gouvernées par un processus de Lévy]
On démontre l'existence et l'unicité de la solution d'équations différentielles doublement stochastiques rétrogrades réfléchies (RBDSDE) gouvernées par des martingales de Teugels associées à un processus de Lévy dans lequel le processus obstacle est continu à droite et possède une limite à gauche (càdlàg), via l'enveloppe de Snell et un théorème de point fixe.
We prove the existence and uniqueness of a solution for reflected backward doubly stochastic differential equations (RBDSDEs) driven by Teugels martingales associated with a Lévy process, in which the obstacle process is right continuous with left limits (càdlàg), via Snell envelope and the fixed point theorem.
Accepté le :
Publié le :
Yong Ren 1
@article{CRMATH_2010__348_7-8_439_0, author = {Yong Ren}, title = {Reflected backward doubly stochastic differential equations driven by a {L\'evy} process}, journal = {Comptes Rendus. Math\'ematique}, pages = {439--444}, publisher = {Elsevier}, volume = {348}, number = {7-8}, year = {2010}, doi = {10.1016/j.crma.2009.11.004}, language = {en}, }
Yong Ren. Reflected backward doubly stochastic differential equations driven by a Lévy process. Comptes Rendus. Mathématique, Volume 348 (2010) no. 7-8, pp. 439-444. doi : 10.1016/j.crma.2009.11.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.11.004/
[1] One barrier reflected backward doubly stochastic differential equations with continuous generator, C. R. Acad. Sci. Paris, Ser. I, Volume 347 (2009), pp. 1201-1206
[2] Reflected BSDEs with discontinuous barrier and applications, Stochastics Stochastics Rep., Volume 74 (2002), pp. 571-596
[3] Reflected backward stochastic differential equations with jumps and random obstacle, Electron. J. Probab., Volume 8 (2003), pp. 1-20
[4] Semimartingale and Stochastic Analysis, Scientific Press, Beijing, 1995
[5] Penalization method for reflected backward stochastic differential equations with one r.c.l.l. barrier, Statist. Probab. Lett., Volume 75 (2005), pp. 58-66
[6] Chaotic and predictable representation for Lévy processes, Stochastic Process. Appl., Volume 90 (2000), pp. 109-122
[7] Reflected backward stochastic differential equation driven by Lévy processes, Statist. Probab. Lett., Volume 77 (2007), pp. 1559-1566
[8] Stochastic PDIEs and backward doubly stochastic differential equations driven by Lévy processes, J. Comput. Appl. Math., Volume 223 (2009), pp. 901-907
Cité par Sources :
☆ The work is supported by the National Natural Science Foundation of China (Project 10901003) and the Great Research Project of Natural Science Foundation of Anhui Provincial Universities.
Commentaires - Politique